scispace - formally typeset
Search or ask a question
Author

P. L. Aparna

Bio: P. L. Aparna is an academic researcher. The author has contributed to research in topics: Non-local means & Filter (signal processing). The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
Book ChapterDOI
01 Jan 2018
TL;DR: This paper proposes a preprocessing technique that removes the noise from the interference field, thereby improving the performance of naive unwrapping algorithms and validates the applicability of proposed approach for processing the noisy interference field.
Abstract: Estimation of phase from the complex interference field has become an emerging area of research for last few decades. The phase values obtained by using arctan function are limited to the interval \((-\pi , \pi ]\). Such phase map is known as wrapped phase. The unwrapping process, which produces continuous phase map from the wrapped phase, becomes tedious in presence of noise. In this paper, we propose a preprocessing technique that removes the noise from the interference field, thereby improving the performance of naive unwrapping algorithms. For de-noising of the complex field, real part and imaginary parts of the field are processed separately. Real-valued images (real and imaginary parts) are processed using non-local means filter with non-Euclidian distance measure. The de-noised real and imaginary parts are then combined to form a clean interference field. MATLAB’s unwrap function is used as unwrapping algorithm to get the continuous phase from the cleaned interference field. Comparison with the Frost’s filter validates the applicability of proposed approach for processing the noisy interference field.

1 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations