scispace - formally typeset
Search or ask a question
Author

P. Merrien

Bio: P. Merrien is an academic researcher. The author has contributed to research in topics: Residual stress & Shot peening. The author has an hindex of 3, co-authored 4 publications receiving 540 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the role of laser shock processing (LSP) on the cyclic properties of A356, Al12Si and 7075 aluminium alloys was evaluated, and major contributors to the fatigue performance improvements were investigated in order to determine the optimum shock conditions.
Abstract: Subjecting target metallic samples to a very short pulse (about 20 ns) of intense (GW cm−2) laser light generates, through a surface plasma, a high-pressure stress wave propagating to the first millimetre in depth, which is commonly called laser shock processing (LSP). The purpose of this work was to evaluate the role of this novel process on the cyclic properties of A356, Al12Si and 7075 aluminium alloys. Major contributors to the fatigue performance improvements were investigated in order to determine the optimum shock conditions. These were mainly compressive residual stress (RS) levels for which a large range of incident shock conditions was performed. We showed that stress levels were very sensitive to the laser fluence and the number of local impacts, and experimental RS measurements were found to be in good agreement with analytical modelling results. In comparison, a conventional shot peening (SP) treatment was found to lead to higher surface hardening and RS levels, but with a very detrimental roughening not observed after LSP. High cycle (107) fatigue tests carried out on laser- processed, shot-peened and untreated notched samples illustrated the efficiency of LSP as a new, promising method to improve the fatigue limits σD of structures, especially in comparison with enhancements displayed by SP (+22% vs. +10%). According to crack detection electric measurements, fatigue performance improvements with LSP mainly occurred during the crack initiation stage.

587 citations

Journal ArticleDOI
TL;DR: In this article, a novel mechanical surface treatment using laser induced shock waves has been applied to the wrought aerospace aluminium alloy 7075-T7 351 to improve its fatigue behavior, and an analytical model developed to predict residual stress levels gave good agreement with experimental values.
Abstract: A novel mechanical surface treatment using laser induced shock waves has been applied to the wrought aerospace aluminium alloy 7075–T7 351 to improve its fatigue behaviour. Optimisation of the shock parametersand mechanical effects produced by the treatment have been investigated and fatigue performance is compared with that of conventionally shot peened specimens. It is shown that use of a one-dimensional Lagrangian hydrodynamic shock wave analysis code allows the attenuation of shock waves to be simulated and the depth of the plastically affected zone to be predicted. An analytical model developed to predict residual stress levels gave good agreement with experimental values. The fatigue limit of laser shocked specimens was found to be higher than that following shot peening. This large increase (22%) appeared to result from the high levels of residual stress and the greater extent of the stress field in the laser treated specimens and, most importantly, from the preservation of the surface cond...

39 citations

Journal ArticleDOI
01 Jan 1993

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is reviewed and the influence of processing parameters on the laser-induced shock waves in metal components are discussed and analyzed.

933 citations

Journal ArticleDOI
TL;DR: In this article, the role of laser shock processing (LSP) on the cyclic properties of A356, Al12Si and 7075 aluminium alloys was evaluated, and major contributors to the fatigue performance improvements were investigated in order to determine the optimum shock conditions.
Abstract: Subjecting target metallic samples to a very short pulse (about 20 ns) of intense (GW cm−2) laser light generates, through a surface plasma, a high-pressure stress wave propagating to the first millimetre in depth, which is commonly called laser shock processing (LSP). The purpose of this work was to evaluate the role of this novel process on the cyclic properties of A356, Al12Si and 7075 aluminium alloys. Major contributors to the fatigue performance improvements were investigated in order to determine the optimum shock conditions. These were mainly compressive residual stress (RS) levels for which a large range of incident shock conditions was performed. We showed that stress levels were very sensitive to the laser fluence and the number of local impacts, and experimental RS measurements were found to be in good agreement with analytical modelling results. In comparison, a conventional shot peening (SP) treatment was found to lead to higher surface hardening and RS levels, but with a very detrimental roughening not observed after LSP. High cycle (107) fatigue tests carried out on laser- processed, shot-peened and untreated notched samples illustrated the efficiency of LSP as a new, promising method to improve the fatigue limits σD of structures, especially in comparison with enhancements displayed by SP (+22% vs. +10%). According to crack detection electric measurements, fatigue performance improvements with LSP mainly occurred during the crack initiation stage.

587 citations

Journal ArticleDOI
TL;DR: An overview of laser-assisted forming, joining, machining and surface engineering can be found in this paper, where a review of the relevant literature is presented to highlight the recent advances and open questions.
Abstract: Light amplification by stimulated emission of radiation (laser) is a coherent and monochromatic beam of electromagnetic radiation that can propagate in a straight line with negligible divergence and occur in a wide range of wave-length, energy/power and beam-modes/configurations. As a result, lasers find wide applications in the mundane to the most sophisticated devices, in commercial to purely scientific purposes, and in life-saving as well as life-threatening causes. In the present contribution, we provide an overview of the application of lasers for material processing. The processes covered are broadly divided into four major categories; namely, laser-assisted forming, joining, machining and surface engineering. Apart from briefly introducing the fundamentals of these operations, we present an updated review of the relevant literature to highlight the recent advances and open questions. We begin our discussion with the general applications of lasers, fundamentals of laser-matter interaction and classification of laser material processing. A major part of the discussion focuses on laser surface engineering that has attracted a good deal of attention from the scientific community for its technological significance and scientific challenges. In this regard, a special mention is made about laser surface vitrification or amorphization that remains a very attractive but unaccomplished proposition.

420 citations

Journal ArticleDOI
TL;DR: In this article, the plastic deformation behavior and the effects of the impact time on the LY2 aluminum (Al) alloy during multiple laser shock processing (LSP) impacts were investigated.

316 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the main process parameters controlling pressure generation in a confined mode is presented, including laser intensity, target material, laser pulse duration, and laser wavelength.
Abstract: The first part of this article presents a review of the main process parameters controlling pressure generation in a confined mode The effect of laser intensity, target material, laser pulse duration, and laser wavelength are, therefore, discussed An optimized process can then be defined The second part of this article deals with the surface modifications induced by laser-shock processing The generation of residual compressive stresses is then highlighted Finally, in the third part, the interest of laser-shock processing is discussed for several typical applications A conclusion will present the future trends of this technique

315 citations