scispace - formally typeset
Search or ask a question
Author

P. Schmutz

Bio: P. Schmutz is an academic researcher. The author has contributed to research in topics: Electrical impedance & Equivalent circuit. The author has an hindex of 1, co-authored 1 publications receiving 559 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A model describing physical processes contributing to the impedance at the interface is validated and extended to quantify the effect of organic coatings and incubation time, and two organic cell-adhesion promoting coatings, poly-L-lysine and laminin, on the interface impedance are quantified.
Abstract: A low electrode-electrolyte impedance interface is critical in the design of electrodes for biomedical applications. To design low-impedance interfaces a complete understanding of the physical processes contributing to the impedance is required. In this work a model describing these physical processes is validated and extended to quantify the effect of organic coatings and incubation time. Electrochemical impedance spectroscopy has been used to electrically characterize the interface for various electrode materials: platinum, platinum black, and titanium nitride; and varying electrode sizes: 1 cm/sup 2/, and 900 /spl mu/m/sup 2/. An equivalent circuit model comprising an interface capacitance, shunted by a charge transfer resistance, in series with the solution resistance has been fitted to the experimental results. Theoretical equations have been used to calculate the interface capacitance impedance and the solution resistance, yielding results that correspond well with the fitted parameter values, thereby confirming the validity of the equations. The effect of incubation time, and two organic cell-adhesion promoting coatings, poly-L-lysine and laminin, on the interface impedance has been quantified using the model. This demonstrates the benefits of using this model in developing a better understanding of the physical processes occurring at the interface in more complex, biomedically relevant situations.

621 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A MATLAB GUI toolbox is developed, which can be used to solve DRT regularization problems, and it is shown that applying RBF discretization for deconvolving the DRT problem can lead to faster numerical convergence rate as compared with that of PWL discretized only at error free situation.

702 citations

Journal ArticleDOI
TL;DR: The ongoing advancements in microelectrode technology are introduced, with focus on achieving higher resolution and quality of recordings by means of monolithic integration with on-chip circuitry.
Abstract: Microelectrode arrays and microprobes have been widely utilized to measure neuronal activity, both in vitro and in vivo. The key advantage is the capability to record and stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or single-channel resolution of intracellular recording, microelectrodes detect signals from all possible sources around the sensor. Here, we review the current understanding of microelectrode signals and the techniques for analyzing them. We introduce the ongoing advancements in microelectrode technology, with focus on achieving higher resolution and quality of recordings by means of monolithic integration with on-chip circuitry. We show how recent advanced microelectrode array measurement methods facilitate the understanding of single neurons as well as network function.

537 citations

Journal ArticleDOI
TL;DR: A novel electrode design that transversally penetrates the peripheral nerve and is intended to selectively activate subsets of axons in different fascicles within the nerve is presented.

412 citations

Journal ArticleDOI
01 Jul 2008-Brain
TL;DR: These data are the first recordings of ripples in humans during a cognitive task and suggest that ripples are indeed related to behavioural performance; they propose a mechanism for phase-locking of r ripple to neocortical slow waves via phase coupling to hippocampal delta activity and show that r ripple can be recorded reliably with standard macroelectrodes in the human brain.
Abstract: High-frequency oscillations (ripples) have been described in the hippocampus and rhinal cortex of both animals and human subjects and have been linked to replay and consolidation of previously acquired information. More specifically, studies in rodents suggested that ripples are generated in the hippocampus and are then transferred into the rhinal cortex, and that they occur predominantly during negative half waves of neocortical slow oscillations. Recordings in human epilepsy patients used either microelectrodes or foramen ovale electrodes; it is thus unclear whether macroelectrodes, which are routinely used for pre-surgical investigations, allow the recording of ripples as well. Furthermore, no direct link between ripples and behavioural performance has yet been established. Here, we recorded intracranial electroencephalogram with macroelectrodes from the hippocampus and rhinal cortex contralateral to the seizure onset zone in 11 epilepsy patients during a memory consolidation task while they were having an afternoon 'nap', i.e. a sleep period of approximately 1 h duration. We found that ripples could reliably be detected both in the hippocampus and in the rhinal cortex and had a similar frequency composition to events recorded previously with microelectrodes in humans. Results from cross-correlation analysis revealed that hippocampal events were closely locked to rhinal events and were consistent with findings on transmission of ripples from the hippocampus into the rhinal cortex. Furthermore, hippocampal ripples were significantly locked to the phase of hippocampal delta band activity, which might provide a mechanism for the reported phase-locking to neocortical slow oscillations. Ripples occurred with the highest incidence during periods when subjects lay awake during the nap time. Finally, we found that the number of rhinal, but not hippocampal, ripples was correlated with the number of successfully recalled items (post-nap) learned prior to sleep. These data confirm previous recordings in animals and humans, but move beyond them in several respects: they are the first recordings of ripples in humans during a cognitive task and suggest that ripples are indeed related to behavioural performance; furthermore, they propose a mechanism for phase-locking of ripples to neocortical slow waves via phase coupling to hippocampal delta activity; finally, they show that ripples can be recorded reliably with standard macroelectrodes in the human brain.

344 citations

Journal ArticleDOI
TL;DR: A microsystem based on electrocorticography (ECoG) that overcomes difficulties, enabling chronic recording and wireless transmission of neural signals from the surface of the cerebral cortex and a simultaneous 3× improvement in power efficiency over the state of the art.
Abstract: Emerging applications in brain–machine interface systems require high-resolution, chronic multisite cortical recordings, which cannot be obtained with existing technologies due to high power consumption, high invasiveness, or inability to transmit data wirelessly. In this paper, we describe a microsystem based on electrocorticography (ECoG) that overcomes these difficulties, enabling chronic recording and wireless transmission of neural signals from the surface of the cerebral cortex. The device is comprised of a highly flexible, high-density, polymer-based 64-channel electrode array and a flexible antenna, bonded to 2.4 mm × 2.4 mm CMOS integrated circuit (IC) that performs 64-channel acquisition, wireless power and data transmission. The IC digitizes the signal from each electrode at 1 kS/s with 1.2 μV input referred noise, and transmits the serialized data using a 1 Mb/s backscattering modulator. A dual-mode power-receiving rectifier reduces data-dependent supply ripple, enabling the integration of small decoupling capacitors on chip and eliminating the need for external components. Design techniques in the wireless and baseband circuits result in over 16× reduction in die area with a simultaneous 3× improvement in power efficiency over the state of the art. The IC consumes 225 μW and can be powered by an external reader transmitting 12 mW at 300 MHz, which is over 3× lower than IEEE and FCC regulations.

322 citations