scispace - formally typeset
Search or ask a question
Author

P Schumacher

Bio: P Schumacher is an academic researcher. The author has an hindex of 3, co-authored 3 publications receiving 712 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Vandewalle, L., Nemegeer, D., Balazs, L, Barros, J., Bartos, P., Banthia, N., Criswell, M., Denarie, E., Di Prisco, M, Falkner, H., Gettu, R., Gopalaratnam, V., Groth, P, Hausler, V, Kooiman, A., Kovler, K., Massicotte, B., Mindess, S., Reinhardt, H, Rossi, P. as mentioned in this paper, Sch
Abstract: General information Publication status: Published Organisations: Section for Structural Engineering, Department of Civil Engineering Contributors: Vandewalle, L., Nemegeer, D., Balazs, L., Barr, B., Barros, J., Bartos, P., Banthia, N., Criswell, M., Denarie, E., Di Prisco, M., Falkner, H., Gettu, R., Gopalaratnam, V., Groth, P., Hausler, V., Kooiman, A., Kovler, K., Massicotte, B., Mindess, S., Reinhardt, H., Rossi, P., Schaerlaekens, S., Schumacher, P., Schnutgen, B., Shah, S., Skarendahl, A., Stang, H., Stroeven, P., Swamy, R., Tatnall, P., Teutsch, M., Walraven, J. Pages: 560-567 Publication date: 2003 Peer-reviewed: Yes

632 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the main fields of application of FRC composites are examined and future perspectives discussed, and some attention is paid to computation methods and composite materials' design approaches.

710 citations

Journal ArticleDOI
TL;DR: In this paper, a review and categorization of a variety of tensile test setups used by other researchers and presents a revised tensile set up tailored to obtain reliable results with minimal preparation effort.
Abstract: Enhanced matrix packing density and tailored fiber-to-matrix interface bond properties have led to the recent development of ultra-high performance fiber reinforced concrete (UHP-FRC) with improved material tensile performance in terms of strength, ductility and energy absorption capacity. The objective of this research is to experimentally investigate and analyze the uniaxial tensile behavior of the new material. The paper reviews and categorizes a variety of tensile test setups used by other researchers and presents a revised tensile set up tailored to obtain reliable results with minimal preparation effort. The experimental investigation considers three types of steel fibers, each in three different volume fractions. Elastic, strain hardening and softening tensile parameters, such as first cracking stress and strain, elastic and strain hardening modulus, composite strength and energy dissipation capacity, of the UHP-FRCs are characterized, analyzed and linked to the crack pattern observed by microscopic analysis. Models are proposed for representing the tensile stress–strain response of the material.

542 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of binder systems containing different levels of silica fume on fresh and mechanical properties of concrete were investigated, and the results indicated that as the proportion of fume increased, the workability of concrete decreased but its short-term mechanical properties such as 28-day compressive strength and secant modulus improved.
Abstract: This paper presents the results of experimental work on short- and long-term mechanical properties of high-strength concrete containing different levels of silica fume. The aim of the study was to investigate the effects of binder systems containing different levels of silica fume on fresh and mechanical properties of concrete. The work focused on concrete mixes having a fixed water/binder ratio of 0.35 and a constant total binder content of 500 kg/m3. The percentages of silica fume that replaced cement in this research were: 0%, 6%, 10% and 15%. Apart from measuring the workability of fresh concrete, the mechanical properties evaluated were: development of compressive strength; secant modulus of elasticity; strain due to creep, shrinkage, swelling and moisture movement. The results of this research indicate that as the proportion of silica fume increased, the workability of concrete decreased but its short-term mechanical properties such as 28-day compressive strength and secant modulus improved. Also the percentages of silica fume replacement did not have a significant influence on total shrinkage; however, the autogenous shrinkage of concrete increased as the amount of silica fume increased. Moreover, the basic creep of concrete decreased at higher silica fume replacement levels. Drying creep (total creep − basic creep) of specimens was negligible in this investigation. The results of swelling tests after shrinkage and creep indicate that increasing the proportion of silica fume lowered the amount of expansion. Because the existing models for predicting creep and shrinkage were inaccurate for high-strength concrete containing silica fume, alternative prediction models are presented here.

531 citations

Journal ArticleDOI
TL;DR: In this article, the main concepts behind the structural rules for Fibre Reinforced Concrete structural design are briefly explained, and a New fib Model Code that aims to update the previous CEB-FIP Model Code 90, published in 1993, is presented.
Abstract: Although the use of Fibre Reinforced Concrete (FRC) for structural applications is continuously increasing, it is still limited with respect to its potentials, mainly due to the lack of International Building Codes for FRC structural elements. Within fib (Federation Internationale du Beton), the Special Activity Group 5 is preparing a New fib Model Code that aims to update the previous CEB-FIP Model Code 90, published in 1993, that can be considered as the reference document for Eurocode 2. The New Model Code includes several innovations and addresses among other topics, new materials for structural design. In this respect, FRC will be introduced. The Technical Groups fib TG 8.3 “Fibre reinforced concrete” and fib TG 8.6 “Ultra high performance FRC” are preparing some sections of the New Model Code, including regular and high performance FRC. This paper aims to briefly explain the main concepts behind the structural rules for FRC structural design.

433 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive review of the mechanism of crack formation and propagation, compressive strength, modulus of elasticity, stress-strain behavior, tensile strength (TS), flexural strength, drying shrinkage, creep, electrical resistance, and chloride migration resistance of high performance fiber reinforced concrete.
Abstract: In recent years, an emerging technology termed, “High-Performance Fiber-Reinforced Concrete (HPFRC)” has become popular in the construction industry. The materials used in HPFRC depend on the desired characteristics and the availability of suitable local economic alternative materials. Concrete is a common building material, generally weak in tension, often ridden with cracks due to plastic and drying shrinkage. The introduction of short discrete fibers into the concrete can be used to counteract and prevent the propagation of cracks. Despite an increase in interest to use HPFRC in concrete structures, some doubts still remain regarding the effect of fibers on the properties of concrete. This paper presents the most comprehensive review to date on the mechanical, physical, and durability-related features of concrete. Specifically, this literature review aims to provide a comprehensive review of the mechanism of crack formation and propagation, compressive strength, modulus of elasticity, stress–strain behavior, tensile strength (TS), flexural strength, drying shrinkage, creep, electrical resistance, and chloride migration resistance of HPFRC. In general, the addition of fibers in high-performance concrete has been proven to improve the mechanical properties of concrete, particularly the TS, flexural strength, and ductility performance. Furthermore, incorporation of fibers in concrete results in reductions in the shrinkage and creep deformations of concrete. However, it has been shown that fibers may also have negative effects on some properties of concrete, such as the workability, which get reduced with the addition of steel fibers. The addition of fibers, particularly steel fibers, due to their conductivity leads to a significant reduction in the electrical resistivity of the concrete, and it also results in some reduction in the chloride penetration resistance of the concrete.

350 citations