scispace - formally typeset
Search or ask a question
Author

P. Todd Stukenberg

Bio: P. Todd Stukenberg is an academic researcher from University of Virginia. The author has contributed to research in topics: Kinetochore & Spindle checkpoint. The author has an hindex of 50, co-authored 99 publications receiving 12387 citations. Previous affiliations of P. Todd Stukenberg include University of Virginia Health System & Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a methodology was proposed to characterize most, if not all, phosphoproteins from a whole-cell lysate in a single experiment, and a total of 216 peptide sequences defining 383 sites of phosphorylation were determined.
Abstract: Protein kinases are coded by more than 2,000 genes and thus constitute the largest single enzyme family in the human genome. Most cellular processes are in fact regulated by the reversible phosphorylation of proteins on serine, threonine, and tyrosine residues. At least 30% of all proteins are thought to contain covalently bound phosphate. Despite the importance and widespread occurrence of this modification, identification of sites of protein phosphorylation is still a challenge, even when performed on highly purified protein. Reported here is methodology that should make it possible to characterize most, if not all, phosphoproteins from a whole-cell lysate in a single experiment. Proteins are digested with trypsin and the resulting peptides are then converted to methyl esters, enriched for phosphopeptides by immobilized metal-affinity chromatography (IMAC), and analyzed by nanoflow HPLC/electrospray ionization mass spectrometry. More than 1,000 phosphopeptides were detected when the methodology was applied to the analysis of a whole-cell lysate from Saccharomyces cerevisiae. A total of 216 peptide sequences defining 383 sites of phosphorylation were determined. Of these, 60 were singly phosphorylated, 145 doubly phosphorylated, and 11 triply phosphorylated. Comparison with the literature revealed that 18 of these sites were previously identified, including the doubly phosphorylated motif pTXpY derived from the activation loop of two mitogen-activated protein (MAP) kinases. We note that the methodology can easily be extended to display and quantify differential expression of phosphoproteins in two different cell systems, and therefore demonstrates an approach for "phosphoprofiling" as a measure of cellular states.

1,666 citations

Journal ArticleDOI
12 Dec 1997-Science
TL;DR: Pin1 is shown to be a phosphorylation-dependent PPIase that specifically recognizes the phosphoserine-proline or phosphothreonine- Proline bonds present in mitotic phosphoproteins, providing the basis for the specific interaction between Pin1 and MPM-2 antigens.
Abstract: Pin1 is an essential and conserved mitotic peptidyl-prolyl isomerase (PPIase) that is distinct from members of two other families of conventional PPIases, cyclophilins and FKBPs (FK-506 binding proteins). In response to their phosphorylation during mitosis, Pin1 binds and regulates members of a highly conserved set of proteins that overlaps with antigens recognized by the mitosis-specific monoclonal antibody MPM-2. Pin1 is here shown to be a phosphorylation-dependent PPIase that specifically recognizes the phosphoserine-proline or phosphothreonine-proline bonds present in mitotic phosphoproteins. Both Pin1 and MPM-2 selected similar phosphorylated serine-proline-containing peptides, providing the basis for the specific interaction between Pin1 and MPM-2 antigens. Pin1 preferentially isomerized proline residues preceded by phosphorylated serine or threonine with up to 1300-fold selectivity compared with unphosphorylated peptides. Pin1 may thus regulate mitotic progression by catalyzing sequence-specific and phosphorylation-dependent proline isomerization.

773 citations

Journal ArticleDOI
TL;DR: It is shown that Ser 62 is dephosphorylated by protein phosphatase 2A (PP2A) before ubiquitination of c-Myc, and that PP2A activity is regulated by the Pin1 prolyl isomerase, resulting in c- myc stabilization.
Abstract: The stability of c-Myc is regulated by multiple Ras effector pathways. Phosphorylation at Ser 62 stabilizes c-Myc, whereas subsequent phosphorylation at Thr 58 is required for its degradation. Here we show that Ser 62 is dephosphorylated by protein phosphatase 2A (PP2A) before ubiquitination of c-Myc, and that PP2A activity is regulated by the Pin1 prolyl isomerase. Furthermore, the absence of Pin1 or inhibition of PP2A stabilizes c-Myc. A stable c-Myc(T58A) mutant that cannot bind Pin1 or be dephosphorylated by PP2A replaces SV40 small T antigen in human cell transformation and tumorigenesis assays. Therefore, small T antigen, which inactivates PP2A, exerts its oncogenic potential by preventing dephosphorylation of c-Myc, resulting in c-Myc stabilization. Thus, Ras-dependent signalling cascades ensure transient and self-limiting accumulation of c-Myc, disruption of which contributes to human cell oncogenesis.

761 citations

Journal ArticleDOI
TL;DR: It is shown that Polo-like kinase is required for the cleavage-independent dissociation of cohesin from chromosomes in Xenopus, and results suggest that Polo, like kinase regulates the dissociation from chromosomes early in mitosis.

494 citations

Journal ArticleDOI
TL;DR: It is proposed that Aurora B biorients chromosomes by directing MCAK to depolymerize incorrectly oriented kinetochore microtubules through phosphorylation of serine 196 in the neck region of M CAK.

486 citations


Cited by
More filters
Journal ArticleDOI
13 Mar 2003-Nature
TL;DR: The ability of mass spectrometry to identify and, increasingly, to precisely quantify thousands of proteins from complex samples can be expected to impact broadly on biology and medicine.
Abstract: Recent successes illustrate the role of mass spectrometry-based proteomics as an indispensable tool for molecular and cellular biology and for the emerging field of systems biology. These include the study of protein-protein interactions via affinity-based isolations on a small and proteome-wide scale, the mapping of numerous organelles, the concurrent description of the malaria parasite genome and proteome, and the generation of quantitative protein profiles from diverse species. The ability of mass spectrometry to identify and, increasingly, to precisely quantify thousands of proteins from complex samples can be expected to impact broadly on biology and medicine.

6,597 citations

Journal ArticleDOI
29 Jun 2007-Cell
TL;DR: Those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration are discussed.

5,505 citations

Journal ArticleDOI
21 Aug 1998-Cell
TL;DR: The results indicate that BID is a mediator of mitochondrial damage induced by Casp8, and coexpression of BclxL inhibits all the apoptotic changes induced by tBID.

4,556 citations

Journal ArticleDOI
03 Nov 2006-Cell
TL;DR: A general mass spectrometric technology is developed and applied for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location to provide a missing link in a global, integrative view of cellular regulation.

3,404 citations

Journal ArticleDOI
TL;DR: Genetic evidence suggests that tumour cells may also require specific interphase CDKs for proliferation, and selective CDK inhibition may provide therapeutic benefit against certain human neoplasias.
Abstract: Tumour-associated cell cycle defects are often mediated by alterations in cyclin-dependent kinase (CDK) activity. Misregulated CDKs induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, mammalian CDKs are essential for driving each cell cycle phase, so therapeutic strategies that block CDK activity are unlikely to selectively target tumour cells. However, recent genetic evidence has revealed that, whereas CDK1 is required for the cell cycle, interphase CDKs are only essential for proliferation of specialized cells. Emerging evidence suggests that tumour cells may also require specific interphase CDKs for proliferation. Thus, selective CDK inhibition may provide therapeutic benefit against certain human neoplasias.

3,146 citations