scispace - formally typeset
Search or ask a question
Author

P. W. Runstadler

Bio: P. W. Runstadler is an academic researcher from Stanford University. The author has contributed to research in topics: Boundary layer & Boundary layer thickness. The author has an hindex of 2, co-authored 2 publications receiving 2654 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe the formation of low-speed streaks in the region very near the wall, which interact with the outer portions of the flow through a process of gradual lift-up, then sudden oscillation, bursting, and ejection.
Abstract: Extensive visual and quantitative studies of turbulent boundary layers are described. Visual studies reveal the presence of surprisingly well-organized spatially and temporally dependent motions within the so-called ‘laminar sublayer’. These motions lead to the formation of low-speed streaks in the region very near the wall. The streaks interact with the outer portions of the flow through a process of gradual ‘lift-up’, then sudden oscillation, bursting, and ejection. It is felt that these processes play a dominant role in the production of new turbulence and the transport of turbulence within the boundary layer on smooth walls.Quantitative data are presented providing an association of the observed structure features with the accepted ‘regions’ of the boundary layer in non-dimensional co-ordinates; these data include zero, negative and positive pressure gradients on smooth walls. Instantaneous spanwise velocity profiles for the inner layers are given, and dimensionless correlations for mean streak-spacing and break-up frequency are presented.Tentative mechanisms for formation and break-up of the low-speed streaks are proposed, and other evidence regarding the implications and importance of the streak structure in turbulent boundary layers is reviewed.

2,753 citations

01 Jun 1963
TL;DR: In this paper, a combination of visual and quantitative measurements is presented, providing a physical picture of the turbulent boundary layer flow structure on a flat plate, and the flow structure is shown to consist of three zones, each zone has a one to one correspondence to the well known regions of the u+, y+ mean velocity profile.
Abstract: : A combination of visual and quantitative measurements is presented, providing a physical picture of the turbulent boundary layer flow structure on a flat plate. The flow structure is shown to consist of three zones, each zone has a one to one correspondence to the well known regions of the u+ , y+ mean velocity profile. A wall layer region is shown to exist below y+ = 10. An apparently fully turbulent region exists corresponding to the logarithmic ''law of the wall'' and the ''buffer'' region. An intermittent zone appears to agree closely with the ''wake'' deviation region. An entirely new result of the investigation is the delineation of the structure of the wall layer region. This region is shown to contain a relatively regular structure of low and high velocity fluid streaks alternating in the span direction, together with the ejection of low momentum fluid into the outer flow. Correlations are given for the rate of ejection and the streak spacing. A qualitative description of other features of the wall layer region and the character of the remainder of the boundary layer flow structure is presented. (Author)

65 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Navier-Stokes equations are well-known to be a good model for turbulence as discussed by the authors, and the results of well over a century of increasingly sophisticated experiments are available at our disposal.
Abstract: It has often been remarked that turbulence is a subject of great scientific and technological importance, and yet one of the least understood (e.g. McComb 1990). To an outsider this may seem strange, since the basic physical laws of fluid mechanics are well established, an excellent mathematical model is available in the Navier-Stokes equations, and the results of well over a century of increasingly sophisticated experiments are at our disposal. One major difficulty, of course, is that the governing equations are nonlinear and little is known about their solutions at high Reynolds number, even in simple geometries. Even mathematical questions as basic as existence and uniqueness are unsettled in three spatial dimensions (cf Temam 1988). A second problem, more important from the physical viewpoint, is that experiments and the available mathematical evidence all indicate that turbulence involves the interaction of many degrees of freedom over broad ranges of spatial and temporal scales. One of the problems of turbulence is to derive this complex picture from the simple laws of mass and momentum balance enshrined in the NavierStokes equations. It was to this that Ruelle & Takens (1971) contributed with their suggestion that turbulence might be a manifestation in physical

3,721 citations

Journal ArticleDOI
TL;DR: Wavelet transforms are recent mathematical techniques, based on group theory and square integrable representations, which allows one to unfold a signal, or a field, into both space and scale, and possibly directions.
Abstract: Wavelet transforms are recent mathematical techniques, based on group theory and square integrable representations, which allows one to unfold a signal, or a field, into both space and scale, and possibly directions. They use analyzing functions, called wavelets, which are localized in space. The scale decomposition is obtained by dilating or contracting the chosen analyzing wavelet before convolving it with the signal. The limited spatial support of wavelets is important because then the behavior of the signal at infinity does not play any role. Therefore the wavelet analysis or syn­ thesis can be performed locally on the signal, as opposed to the Fourier transform which is inherently nonlocal due to the space-filling nature of the trigonometric functions. Wavelet transforms have been applied mostly to signal processing, image coding, and numerical analysis, and they are still evolving. So far there are only two complete presentations of this topic, both written in French, one for engineers (Gasquet & Witomski 1 990) and the other for mathematicians (Meyer 1 990a), and two conference proceedings, the first in English (Combes et al 1 989), the second in French (Lemarie 1 990a). In preparation are a textbook (Holschneider 199 1 ), a course (Dau­ bee hies 1 99 1), three conference procecdings (Mcyer & Paul 199 1 , Beylkin et al 199 1b, Farge et al 1 99 1), and a special issue of IEEE Transactions

2,770 citations

Journal ArticleDOI
TL;DR: In this paper, the role of coherent structures in the production and dissipation of turbulence in a boundary layer is characterized, summarizing the results of recent investigations, and diagrams and graphs are provided.
Abstract: The role of coherent structures in the production and dissipation of turbulence in a boundary layer is characterized, summarizing the results of recent investigations. Coherent motion is defined as a three-dimensional region of flow where at least one fundamental variable exhibits significant correlation with itself or with another variable over a space or time range significantly larger than the smallest local scales of the flow. Sections are then devoted to flow-visualization experiments, statistical analyses, numerical simulation techniques, the history of coherent-structure studies, vortices and vortical structures, conceptual models, and predictive models. Diagrams and graphs are provided.

2,518 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that a large-scale orderly pattern may exist in the noiseproducing region of a round subsonic jet by observing the evolution of orderly flow with advancing Reynolds number.
Abstract: Past evidence suggests that a large-scale orderly pattern may exist in the noiseproducing region of a jet. Using several methods to visualize the flow of round subsonic jets, we watched the evolution of orderly flow with advancing Reynolds number. As the Reynolds number increases from order 102 to 103, the instability of the jet evolves from a sinusoid to a helix, and finally to a train of axisymmetric waves. At a Reynolds number around 104, the boundary layer of the jet is thin, and two kinds of axisymmetric structure can be discerned: surface ripples on the jet column, thoroughly studied by previous workers, and a more tenuous train of large-scale vortex puffs. The surface ripples scale on the boundary-layer thickness and shorten as the Reynolds number increases toward 105. The structure of the puffs, by contrast, remains much the same: they form at an average Strouhal number of about 0·3 based on frequency, exit speed, and diameter.To isolate the large-scale pattern at Reynolds numbers around 105, we destroyed the surface ripples by tripping the boundary layer inside the nozzle. We imposed a periodic surging of controllable frequency and amplitude at the jet exit, and studied the response downstream by hot-wire anemometry and schlieren photography. The forcing generates a fundamental wave, whose phase velocity accords with the linear theory of temporally growing instabilities. The fundamental grows in amplitude downstream until non-linearity generates a harmonic. The harmonic retards the growth of the fundamental, and the two attain saturation intensities roughly independent of forcing amplitude. The saturation amplitude depends on the Strouhal number of the imposed surging and reaches a maximum at a Strouhal number of 0·30. A root-mean-square sinusoidal surging only 2% of the mean exit speed brings the preferred mode to saturation four diameters downstream from the nozzle, at which point the entrained volume flow has increased 32% over the unforced case. When forced at a Strouhal number of 0·60, the jet seems to act as a compound amplifier, forming a violent 0·30 subharmonic and suffering a large increase of spreading angle. We conclude with the conjecture that the preferred mode having a Strouhal number of 0·30 is in some sense the most dispersive wave on a jet column, the wave least capable of generating a harmonic, and therefore the wave most capable of reaching a large amplitude before saturating.

2,108 citations

Journal ArticleDOI
TL;DR: In this paper, the structure of energy-containing turbulence in the outer region of a zero-pressure-gradient boundary layer has been studied using particle image velocimetry (PIV) to measure the instantaneous velocity fields in a streamwise-wall-normal plane.
Abstract: The structure of energy-containing turbulence in the outer region of a zero-pressure- gradient boundary layer has been studied using particle image velocimetry (PIV) to measure the instantaneous velocity fields in a streamwise-wall-normal plane. Experiments performed at three Reynolds numbers in the range 930 0) that occur on a locus inclined at 30–60° to the wall.In the outer layer, hairpin vortices occur in streamwise-aligned packets that propagate with small velocity dispersion. Packets that begin in or slightly above the buffer layer are very similar to the packets created by the autogeneration mechanism (Zhou, Adrian & Balachandar 1996). Individual packets grow upwards in the streamwise direction at a mean angle of approximately 12°, and the hairpins in packets are typically spaced several hundred viscous lengthscales apart in the streamwise direction. Within the interior of the envelope the spatial coherence between the velocity fields induced by the individual vortices leads to strongly retarded streamwise momentum, explaining the zones of uniform momentum observed by Meinhart & Adrian (1995). The packets are an important type of organized structure in the wall layer in which relatively small structural units in the form of three-dimensional vortical structures are arranged coherently, i.e. with correlated spatial relationships, to form much longer structures. The formation of packets explains the occurrence of multiple VITA events in turbulent ‘bursts’, and the creation of Townsend's (1958) large-scale inactive motions. These packets share many features of the hairpin models proposed by Smith (1984) and co-workers for the near-wall layer, and by Bandyopadhyay (1980), but they are shown to occur in a hierarchy of scales across most of the boundary layer.In the logarithmic layer, the coherent vortex packets that originate close to the wall frequently occur within larger, faster moving zones of uniform momentum, which may extend up to the middle of the boundary layer. These larger zones are the induced interior flow of older packets of coherent hairpin vortices that originate upstream and over-run the younger, more recently generated packets. The occurence of small hairpin packets in the environment of larger hairpin packets is a prominent feature of the logarithmic layer. With increasing Reynolds number, the number of hairpins in a packet increases.

1,627 citations