scispace - formally typeset
Search or ask a question
Author

Pablo A. Tarazaga

Other affiliations: Texas A&M University
Bio: Pablo A. Tarazaga is an academic researcher from Virginia Tech. The author has contributed to research in topics: Vibration & Modal analysis. The author has an hindex of 17, co-authored 151 publications receiving 1140 citations. Previous affiliations of Pablo A. Tarazaga include Texas A&M University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed dimensionless analysis is given for predicting the locations of the strain nodes of a cantilevered beam in the absence and presence of a tip mass, and the cancellation issue is not peculiar to clamped-free boundary conditions, dimensionless data of modal strain nodes are tabulated for some other practical boundary condition pairs.
Abstract: For the past five years, cantilevered beams with piezoceramic layer(s) have been frequently used as piezoelectric energy harvesters for vibration-to-electric energy conversion. Typically, the energy harvester beam is located on a vibrating host structure and the dynamic strain induced in the piezoceramic layer(s) results in an alternating voltage output across the electrodes. Vibration modes of a cantilevered piezoelectric energy harvester other than the fundamental mode have certain strain nodes where the dynamic strain distribution changes sign in the direction of beam length. It is theoretically explained and experimentally demonstrated in this paper that covering the strain nodes of vibration modes with continuous electrodes results in strong cancellations of the electrical outputs. A detailed dimensionless analysis is given for predicting the locations of the strain nodes of a cantilevered beam in the absence and presence of a tip mass. Since the cancellation issue is not peculiar to clamped-free boundary conditions, dimensionless data of modal strain nodes are tabulated for some other practical boundary condition pairs and these data can be useful in modal actuation problems as well. How to avoid the cancellation problem in energy harvesting by using segmented electrode pairs is described for single-mode and multimode vibrations of a cantilevered piezoelectric energy harvester. An electrode configuration-based side effect of using a large tip mass on the electrical response at higher vibration modes is discussed theoretically and demonstrated experimentally.

179 citations

Journal ArticleDOI
TL;DR: The proposed approach, inspired by side-channel schemes used to detect Trojans (foreign malicious logic) in integrated circuits, aims at detecting changes to a manufactured part's intrinsic behavior through the use of structural health monitoring techniques.

70 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a gender classification accuracy of 88% is achievable using the underfloor vibration data from the Virginia Tech Goodwin Hall by using decision tree approaches.
Abstract: The ability to classify the gender of occupants in a building has far-reaching applications including security and retail sales. The authors demonstrate the success of machine learning techniques for gender classification. High-sensitivity accelerometers mounted noninvasively beneath an actual building floor provide the input for these machine learning methods. While other approaches using gait measurements, such as vision systems and wearable sensors, provide the potential for gender classification, they each face limitations. These limitations include an invasion of privacy, occupant compliance, required line of sight, and/or high sensor density. Underfloor mounted accelerometers overcome these limitations. The authors utilize the highly-instrumented Goodwin Hall smart building on the Virginia Tech campus to measure vibrations of the walking surface caused by walkers. In this paper, the gait of 15 individual walkers was recorded as they, alone, walked down the instrumented hallway. Fourteen accelerometers, mounted underneath the walking surface, recorded walking trials with the placement of the sensors unknown to the walker. This paper studies bagged decision trees, boosted decision trees, support vector machines, and neural networks as the machine learning techniques for their ability to classify gender. A tenfold-cross-validation method is used to comment on the validity of the algorithm’s ability to generalize to new walkers. This paper demonstrates that a gender classification accuracy of 88% is achievable using the underfloor vibration data from the Virginia Tech Goodwin Hall by using decision tree approaches.

51 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed measurements of footstep-generated vibrations as a novel source of information for localization and developed enhancements for arrival time determination and time difference of arrival localization in order to address the complexities posed by wave propagation within a building's structure.

49 citations

Proceedings ArticleDOI
22 Jun 2015
TL;DR: The promising initial findings indicate that time-difference-of-arrival, within a limited spatial extent, could be a viable localization technique, and these results encourage further research into vibration-based indoor localization.
Abstract: Indoor localization by means of GNSS or a cellular-based method is known to be difficult. Potentially, other wireless technologies could address the technical requirements, but they usually imply the end user must carry a device compatible with this additional technology too. In this paper we investigate the feasibility of collecting vibration sensor readings within a building to locate pedestrians by their footsteps. Vibration propagation in buildings is markedly different than radio wave propagation in free space, thus prompting one to question the suitability of conventional positioning algorithms for this task. We presents the results of experiments conducted with actual measurements from an instrumented, smart building. We expect such buildings to become more prevalent in the future thanks to the technical advances and cost reductions provided by the Internet-of-Things (IoT). The promising initial findings indicate that time-difference-of-arrival, within a limited spatial extent, could be a viable localization technique, and these results encourage further research into vibration-based indoor localization.

49 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: In this paper, a closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler-Bernoulli beam assumptions is presented, and the performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance frequency excitations.
Abstract: Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of Rayleigh–Ritz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler–Bernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance frequency excitations and the accuracy of the model is shown in all cases.

1,187 citations

Journal ArticleDOI
TL;DR: In this article, the exact analytical solution of a cantilevered piezoelectric energy harvester with Euler-Bernoulli beam assumptions is presented, and the resulting expressions for the coupled mechanical response and the electrical outputs are then reduced for the particular case of harmonic behavior in time and closed-form exact expressions are obtained.
Abstract: Cantilevered beams with piezoceramic layers have been frequently used as piezoelectric vibration energy harvesters in the past five years. The literature includes several single degree-of-freedom models, a few approximate distributed parameter models and even some incorrect approaches for predicting the electromechanical behavior of these harvesters. In this paper, we present the exact analytical solution of a cantilevered piezoelectric energy harvester with Euler–Bernoulli beam assumptions. The excitation of the harvester is assumed to be due to its base motion in the form of translation in the transverse direction with small rotation, and it is not restricted to be harmonic in time. The resulting expressions for the coupled mechanical response and the electrical outputs are then reduced for the particular case of harmonic behavior in time and closed-form exact expressions are obtained. Simple expressions for the coupled mechanical response, voltage, current, and power outputs are also presented for excitations around the modal frequencies. Finally, the model proposed is used in a parametric case study for a unimorph harvester, and important characteristics of the coupled distributed parameter system, such as short circuit and open circuit behaviors, are investigated in detail. Modal electromechanical coupling and dependence of the electrical outputs on the locations of the electrodes are also discussed with examples.

1,040 citations

Journal ArticleDOI
TL;DR: This exhaustive literature review provides a concrete definition of Industry 4.0 and defines its six design principles such as interoperability, virtualization, local, real-time talent, service orientation and modularity.
Abstract: Manufacturing industry profoundly impact economic and societal progress. As being a commonly accepted term for research centers and universities, the Industry 4.0 initiative has received a splendid attention of the business and research community. Although the idea is not new and was on the agenda of academic research in many years with different perceptions, the term “Industry 4.0” is just launched and well accepted to some extend not only in academic life but also in the industrial society as well. While academic research focuses on understanding and defining the concept and trying to develop related systems, business models and respective methodologies, industry, on the other hand, focuses its attention on the change of industrial machine suits and intelligent products as well as potential customers on this progress. It is therefore important for the companies to primarily understand the features and content of the Industry 4.0 for potential transformation from machine dominant manufacturing to digital manufacturing. In order to achieve a successful transformation, they should clearly review their positions and respective potentials against basic requirements set forward for Industry 4.0 standard. This will allow them to generate a well-defined road map. There has been several approaches and discussions going on along this line, a several road maps are already proposed. Some of those are reviewed in this paper. However, the literature clearly indicates the lack of respective assessment methodologies. Since the implementation and applications of related theorems and definitions outlined for the 4th industrial revolution is not mature enough for most of the reel life implementations, a systematic approach for making respective assessments and evaluations seems to be urgently required for those who are intending to speed this transformation up. It is now main responsibility of the research community to developed technological infrastructure with physical systems, management models, business models as well as some well-defined Industry 4.0 scenarios in order to make the life for the practitioners easy. It is estimated by the experts that the Industry 4.0 and related progress along this line will have an enormous effect on social life. As outlined in the introduction, some social transformation is also expected. It is assumed that the robots will be more dominant in manufacturing, implanted technologies, cooperating and coordinating machines, self-decision-making systems, autonom problem solvers, learning machines, 3D printing etc. will dominate the production process. Wearable internet, big data analysis, sensor based life, smart city implementations or similar applications will be the main concern of the community. This social transformation will naturally trigger the manufacturing society to improve their manufacturing suits to cope with the customer requirements and sustain competitive advantage. A summary of the potential progress along this line is reviewed in introduction of the paper. It is so obvious that the future manufacturing systems will have a different vision composed of products, intelligence, communications and information network. This will bring about new business models to be dominant in industrial life. Another important issue to take into account is that the time span of this so-called revolution will be so short triggering a continues transformation process to yield some new industrial areas to emerge. This clearly puts a big pressure on manufacturers to learn, understand, design and implement the transformation process. Since the main motivation for finding the best way to follow this transformation, a comprehensive literature review will generate a remarkable support. This paper presents such a review for highlighting the progress and aims to help improve the awareness on the best experiences. It is intended to provide a clear idea for those wishing to generate a road map for digitizing the respective manufacturing suits. By presenting this review it is also intended to provide a hands-on library of Industry 4.0 to both academics as well as industrial practitioners. The top 100 headings, abstracts and key words (i.e. a total of 619 publications of any kind) for each search term were independently analyzed in order to ensure the reliability of the review process. Note that, this exhaustive literature review provides a concrete definition of Industry 4.0 and defines its six design principles such as interoperability, virtualization, local, real-time talent, service orientation and modularity. It seems that these principles have taken the attention of the scientists to carry out more variety of research on the subject and to develop implementable and appropriate scenarios. A comprehensive taxonomy of Industry 4.0 can also be developed through analyzing the results of this review.

1,011 citations

Journal ArticleDOI
18 Apr 2018-Joule
TL;DR: A comprehensive review of piezoelectric energy-harvesting techniques developed in the last decade is presented, identifying four promising applications: shoes, pacemakers, tire pressure monitoring systems, and bridge and building monitoring.

720 citations