scispace - formally typeset
Search or ask a question
Author

Pablo E. Visconti

Bio: Pablo E. Visconti is an academic researcher from University of Massachusetts Amherst. The author has contributed to research in topics: Capacitation & Sperm. The author has an hindex of 55, co-authored 135 publications receiving 11271 citations. Previous affiliations of Pablo E. Visconti include University of Pennsylvania & University of Virginia.


Papers
More filters
Journal ArticleDOI
TL;DR: Caput epididymal sperm, which lack the ability to undergo capacitation in vitro, do not display this capacitation-dependent subset of tyrosine phosphorylated proteins in complete media even after extended incubation periods, and do not fertilize metaphase II-arrested eggs in vitro.
Abstract: The molecular basis of mammalian sperm capacitation, defined functionally as those processes that confer on the sperm the acquisition of fertilization-competence either in vivo in the female reproductive tract or in vitro, is poorly understood. We demonstrate here that capacitation of caudal epididymal mouse sperm in vitro is accompanied by a time-dependent increase in the protein tyrosine phosphorylation of a subset of proteins of M(r) 40,000-120,000. Incubation of sperm in media devoid of bovine serum albumin, CaCl2 or NaHCO3, components which individually are required for capacitation, prevent the sperm from undergoing capacitation as assessed by the ability of the cells to acquire the pattern B chlortetracycline fluorescence, to undergo the zona pellucida-induced acrosome reaction and, in some cases, to fertilize metaphase II-arrested eggs in vitro. In each of these cases the protein tyrosine phosphorylation of the subset of capacitation-associated proteins does not occur. Protein tyrosine phosphorylation of these particular proteins, as well as sperm capacitation, can be recovered in media devoid of each of these three constituents (bovine serum albumin, CaCl2 or NaHCO3) by adding back the appropriate component in a concentration-dependent manner. The requirement of NaHCO3 for these phosphorylations is not due to an alkalinization of intracellular sperm pH or to an increase in media pH. Caput epididymal sperm, which lack the ability to undergo capacitation in vitro, do not display this capacitation-dependent subset of tyrosine phosphorylated proteins in complete media even after extended incubation periods, and do not fertilize metaphase II-arrested eggs in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)

948 citations

Journal ArticleDOI
TL;DR: Up-regulation of protein tyrosine phosphorylation by cAMP/PKA in sperm is, to the authors' knowledge, the first demonstration of such an interrelationship between tyrosin kinase/phosphatase and PKA signaling pathways.
Abstract: In the accompanying report (Visconti, P.E., Bailey, J.L., Moore, G.D., Pan, D., Olds-Clarke, P. and Kopf, G.S. (1995) Development, 121, 1129–1137) we demonstrated that the tyrosine phosphorylation of a subset of mouse sperm proteins of M(r) 40,000-120,000 was correlated with the capacitation state of the sperm. The mechanism by which protein tyrosine phosphorylation is regulated in sperm during this process is the subject of this report. Cauda epididymal sperm, when incubated in media devoid of NaHCO3, CaCl2 or bovine serum albumin do not display the capacitation-associated increases in protein tyrosine phosphorylation of this subset of proteins. This NaHCO3, CaCl2 or bovine serum albumin requirement for protein tyrosine phosphorylation can be completely overcome by the addition of biologically active, but not inactive, cAMP analogues. Addition of the active cAMP analogues to sperm incubated in media devoid of NaHCO3, CaCl2 or bovine serum albumin overcomes the inability of these media to support capacitation, as assessed by the ability of the cells to acquire the pattern B chlortetracycline fluorescence, to undergo the zona pellucida-induced acrosome reaction and, in some cases, to fertilize metaphase II-arrested eggs in vitro. The effects of the cAMP analogues to enhance protein tyrosine phosphorylation and to promote capacitation appears to be at the level of the cAMP-dependent protein kinase (PKA), since two specific inhibitors of this enzyme (H-89 and Rp-cAMPS) block the capacitation-dependent increases in protein tyrosine phosphorylation in sperm incubated in media supporting capacitation. Capacitation, as assessed by the aforementioned endpoints, also appears to be inhibited by H-89 in a concentration-dependent manner. These results provide further evidence for the interrelationship between protein tyrosine phosphorylation and the appearance of the capacitated state in mouse sperm. They also demonstrate that both protein tyrosine phosphorylation and capacitation appear to be regulated by cAMP/PKA. Up-regulation of protein tyrosine phosphorylation by cAMP/PKA in sperm is, to our knowledge, the first demonstration of such an interrelationship between tyrosine kinase/phosphatase and PKA signaling pathways.

801 citations

Journal ArticleDOI
TL;DR: Capacitation in vitro has been accomplished using cauda and/or ejaculated sperm incubated under a variety of conditions in defined media that mimic the electrolyte composition of the oviduct fluid, and the action of these media components to promote capacitation at the molecular level is poorly understood.
Abstract: After leaving the testis, mammalian spermatozoa from many species are morphologically differentiated but have acquired neither progressive motility nor the ability to fertilize a metaphase II-arrested egg. During epididymal transit, sperm acquire the ability to move progressively; however, they are still fertilization incompetent. Fertilization capacity is gained after residence in the female tract for a finite period of time. The physiological changes that confer on the sperm the ability to fertilize are collectively called ‘‘capacitation.’’ Capacitation was first described and defined independently by Chang [1, 2] and Austin [3, 4]. The definition of this poorly understood phenomenon has been modified and narrowed over the years. Although fertilization still represents the benchmark endpoint of a capacitated sperm, the ability of the sperm to undergo a regulated acrosome reaction (e.g., in response to the zona pellucida) can be taken as an earlier, upstream endpoint of this extratesticular maturational event. It must be stressed at this point that capacitation is also correlated with changes in sperm motility patterns, designated as sperm hyperactivation, in a number of species [5, 6]. There are examples of cases in which capacitation and hyperactivation can be dissociated experimentally [7], but one cannot yet argue that hyperactivation of motility represents an event completely independent of the capacitation process [6]. Therefore, when one attempts to understand the process of capacitation at the molecular level, it is necessary to consider events occurring both in the head (i.e., acrosome reaction) and in the tail (i.e., motility changes). The physiological site of capacitation in vivo is the oviduct or the uterus, depending on the species [5]. However, capacitation in vitro has been accomplished using cauda and/or ejaculated sperm incubated under a variety of conditions in defined media that mimic the electrolyte composition of the oviduct fluid. In most cases, these media contain energy substrates such as pyruvate, lactate, and glucose (depending on the species); a protein source that usually is serum albumin; NaHCO3; and Ca21. The action of these media components to promote capacitation at the molecular level is poorly understood and will be discussed in this review. This review is not intended to provide an ex-

470 citations

Journal ArticleDOI
TL;DR: The phosphopeptide enrichment and quantification methodology coupled to MS/MS, described here for the first time, can be employed to map and compare phosphorylation sites involved in multiple cellular processes.

467 citations

Journal ArticleDOI
TL;DR: These studies are the first to report a unique interrelationship between tyrosine kinase/phosphatase and cAMP signaling pathways at the level of PK-A in bovine sperm capacitation.
Abstract: Mammalian sperm capacitation, defined as an obligatory maturational process leading to the development of the fertilization-competent state, results from a poorly understood series of morphological and molecular events. We report here that ejaculated bovine sperm, incubated under conditions that support capacitation in vitro, display a reproducible pattern of protein tyrosine phosphorylations that are regulated by a cAMP-dependent pathway. The appearance of these tyrosine phosphorylated proteins correlated temporally with the time course of capacitation induced by heparin, and these phosphorylations displayed a similar heparin concentration dependence. Glucose, which inhibits capacitation, inhibited these protein tyrosine phosphorylations in media containing heparin. The biologically active cAMP analogues (dibutyryl cAMP [db-cAMP], 8-bromo cAMP, sp-cAMPS) and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) induced the same protein tyrosine phosphorylation patterns as seen with heparin. Moreover, these cAMP agonists could overcome the inhibition of the heparin-induced tyrosine phosphorylations by glucose. In contrast, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPS), a protein kinase A (PK-A) antagonist, blocked the capacitation-associated increases in protein tyrosine phosphorylation. This cAMP regulation of the protein tyrosine phosphorylation pattern is mediated by PK-A since N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide-dihydrochloride (H89), another inhibitor of PK-A, inhibited the heparin-induced protein tyrosine phosphorylation pattern in a concentration-dependent manner in either the absence or presence of db-cAMP, IBMX, and glucose. These data support a model for sperm capacitation that includes protein tyrosine phosphorylation as an important regulatory pathway, and a role for cAMP/PK-A in the regulation of this pathway leading to capacitation. These studies are the first to report a unique interrelationship between tyrosine kinase/phosphatase and cAMP signaling pathways at the level of PK-A in bovine sperm capacitation.

402 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reports a highly selective enrichment procedure for phosphorylated peptides based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB), and demonstrates that this new procedure was more selective for binding phosphorylation peptides than IMAC using MALDI mass spectrometry.

1,489 citations

Journal ArticleDOI
TL;DR: Using a strategy based on strong cation exchange chromatography, phosphopeptides were enriched from the nuclear fraction of HeLa cell lysate and determined 2,002 phosphorylation sites, an unprecedented large collection of sites permitted a detailed accounting of known and unknown kinase motifs and substrates.
Abstract: Determining the site of a regulatory phosphorylation event is often essential for elucidating specific kinase–substrate relationships, providing a handle for understanding essential signaling pathways and ultimately allowing insights into numerous disease pathologies. Despite intense research efforts to elucidate mechanisms of protein phosphorylation regulation, efficient, large-scale identification and characterization of phosphorylation sites remains an unsolved problem. In this report we describe an application of existing technology for the isolation and identification of phosphorylation sites. By using a strategy based on strong cation exchange chromatography, phosphopeptides were enriched from the nuclear fraction of HeLa cell lysate. From 967 proteins, 2,002 phosphorylation sites were determined by tandem MS. This unprecedented large collection of sites permitted a detailed accounting of known and unknown kinase motifs and substrates.

1,415 citations

Journal ArticleDOI
TL;DR: This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Abstract: Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.

1,239 citations

Journal ArticleDOI
TL;DR: Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.
Abstract: Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.

1,144 citations