scispace - formally typeset
Search or ask a question
Author

Pablo García-Sánchez

Bio: Pablo García-Sánchez is an academic researcher from University of Seville. The author has contributed to research in topics: Electric field & Dielectrophoresis. The author has an hindex of 19, co-authored 63 publications receiving 980 citations. Previous affiliations of Pablo García-Sánchez include University of Málaga & University of Twente.


Papers
More filters
Journal ArticleDOI
01 Aug 2005
TL;DR: In this article, a map of the fluid velocity as a function of voltage (0-8 Vpp) and frequency (0, 1-100 kHz) is presented for the travelling-wave array.
Abstract: Net fluid flow induced by ac potentials applied to arrays of co-planar interdigitated microelectrodes is reported. Two types of microelectrode structures have been employed: arrays of unequal width electrodes subjected to a single ac signal, and arrays of identical electrodes subjected to a travelling-wave potential. A square glass chamber was constructed around the electrode arrays and filled with a concentration of KCI in water of conductivity around 1 mS/m. A map of the fluid velocity as a function of voltage (0-8 Vpp) and frequency (0,1-100 kHz) is presented for the travelling-wave array. In both microstructures, two fluid flow regimes have been observed: at small voltage amplitudes the fluid moves in a certain direction, and at higher voltage amplitudes the fluid flow is reversed. The fluid flow seems to be driven at the level of the electrodes in the two flow regimes. The observations at low-voltages are in qualitative accordance with an ac electroosmotic model based upon the Debye-Huckel theory for the double layer.

86 citations

Journal ArticleDOI
18 Sep 2012-Langmuir
TL;DR: Experimental observations of dielectrophoresis and electrorotation measurements of gold-coated polystyrene microspheres as a function of frequency and for several electrolyte conductivities are in agreement with predictions for the force and torque on the induced dipole of a perfectly polarizable metal sphere.
Abstract: We present dielectrophoresis (DEP) and electrorotation (ROT) measurements of gold-coated polystyrene microspheres as a function of frequency and for several electrolyte conductivities. Particle rotation was counterfield with a maximum rotation rate observed at a single characteristic frequency. Negative DEP was observed for frequencies lower than this characteristic frequency and positive DEP for signal frequencies higher than this. These experimental observations are in agreement with predictions for the force and torque on the induced dipole of a perfectly polarizable metal sphere. We present a theoretical model for this case, and good agreement is found for both ROT and DEP measurements if we take into account the viscous friction for a spherical particle near a wall. From the characteristic frequency for rotation, we obtain the capacitance of the electrical double layer at the electrolyte-particle interface. Remarkably, no effect of induced charge electroosmosis around the particles can be inferred from DEP measurements.

78 citations

Journal ArticleDOI
TL;DR: The driving mechanism of the hitherto unexplained high-frequency flows is provided, which shows that the electric field in the liquid bulk becomes important, leading to energy dissipation due to Joule heating and a temperature increase of several degrees Celsius.
Abstract: Mixing within sessile drops can be enhanced by generating internal flow patterns using ac electrowetting. While for low ac frequencies, the flow patterns have been attributed to oscillations of the drop surface, we provide here the driving mechanism of the hitherto unexplained high-frequency flows. We show that: (1) the electric field in the liquid bulk becomes important, leading to energy dissipation due to Joule heating and a temperature increase of several degrees Celsius, and (2) the fluid flow at these frequencies is generated by electrothermal effect, i.e., gradients in temperature give rise to gradients in conductivity and permittivity, the electric field acting on these inhomogeneities induces an electrical body force that generates the flow. We solved numerically the equations for the electric, temperature and flow fields. The temperature is obtained from a convection-diffusion equation where Joule heating is introduced as a source term. From the solution of the electric field and the temperature, we compute the electrical force that acts as a body force in Stokes equations. Our numerical results agree with previous experimental observations.

62 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed both theory and experimental observation of the AC electrokinetic properties of conducting microparticles suspended in an aqueous electrolyte and highlighted the importance of the RC time for charging the double layer.
Abstract: This paper reviews both theory and experimental observation of the AC electrokinetic properties of conducting microparticles suspended in an aqueous electrolyte. Applied AC electric fields interact with the induced charge in the electrical double layer at the metal particle–electrolyte interface. In general, particle motion is governed by both the electric field interacting with the induced dipole on the particle and also the induced-charge electro-osmotic (ICEO) flow around the particle. The importance of the RC time for charging the double layer is highlighted. Experimental measurements of the AC electrokinetic behaviour of conducting particles (dielectrophoresis, electro-rotation and electro-orientation) are compared with theory, providing a comprehensive review of the relative importance of particle motion due to forces on the induced dipole compared with motion arising from induced-charge electro-osmotic flow. In addition, the electric-field driven assembly of conducting particles is reviewed in relation to their AC electrokinetic properties and behaviour.

62 citations

Journal ArticleDOI
TL;DR: A novel particle separation technique that combines deterministic lateral displacement (DLD) with orthogonal electrokinetic forces leading to enhanced sorting of particles below the critical diameter of the device is described.
Abstract: We describe a novel particle separation technique that combines deterministic lateral displacement (DLD) with orthogonal electrokinetic forces. DLD is a microfluidic technique for continuous flow particle separation based on size. We describe new tunable devices that use a combination of AC electric fields with DLD to separate particles below the critical diameter. Planar electrodes were integrated into a classical DLD device to produce a force orthogonal to the fluid flow direction. Experiments with 3.0 μm, 1.0 μm and 500 nm diameter microspheres show that at low frequencies (up to 500 Hz) particles oscillate in the direction of the field due to electrophoretic (EP)/electroosmotic (EO) forces. As the frequency of the field increases, the amplitude of these oscillations vanishes and, eventually dielectrophoresis (DEP) becomes the dominant electrokinetic force on the particles (DEP arises from electric field inhomogeneities caused by the presence of the DLD posts). Both mechanisms alter the paths of the particles inside the DLD devices leading to enhanced sorting of particles below the critical diameter of the device.

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions, and that ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance; each trend is enhanced by dielectric saturation.

800 citations

Journal ArticleDOI
TL;DR: This review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co- flow, flow-focusing, and step emulsification configurations.
Abstract: Precise and effective control of droplet generation is critical for applications of droplet microfluidics ranging from materials synthesis to lab-on-a-chip systems. Methods for droplet generation can be either passive or active, where the former generates droplets without external actuation, and the latter makes use of additional energy input in promoting interfacial instabilities for droplet generation. A unified physical understanding of both passive and active droplet generation is beneficial for effectively developing new techniques meeting various demands arising from applications. Our review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co-flow, flow-focusing, and step emulsification configurations. The review of active approaches covers the state-of-the-art techniques employing either external forces from electrical, magnetic and centrifugal fields or methods of modifying intrinsic properties of flows or fluids such as velocity, viscosity, interfacial tension, channel wettability, and fluid density, with a focus on their implementations and actuation mechanisms. Also included in this review is the contrast among different approaches of either passive or active nature.

772 citations

01 Jan 2006
TL;DR: The mysterious rattleback and its fluid counterpart:Developments in shear instabilities(Patrick Huerre,Falling clouds+Elisabeth Guazzelli)LEcotectural fluid mechanics%Herbert Huppert )
Abstract: 流体力学杂志“Journal of Fluid Mechanics”由剑桥大学教授George Batchelor在1956年5月创办,在国际流体力学界享有很高的学术声望,被公认为是流体力学最著名的学术刊物之一,2005年的影响因子为2.061,雄居同类期刊之首.在它创刊50周年之际,2006年5月JFM出版了第554卷的纪念特刊,其中刊登了现任主编(美国西北大学S.H.Davis教授和英国剑桥大学T.J.Pedley教授)合写的述评:“Editorial:JFM at50”,以JFM为背景,从独特的视角对近50年来流体力学的发展进行了简明的回顾和展望,并归纳了一系列非常有启发性的有趣统计数字.2006年7月21日在剑桥大学应用数学和理论物理研究所(DAMTP)举行了创刊50周年的庆祝会.下午2点,JFM的新老编辑和来宾会聚一堂,Pedley教授致开幕词,其后是5个精彩的报告:The mysterious rattleback and its fluid counterpart(Keith Moffatt),Developments in shear instabilities(Patrick Huerre),Falling clouds(Elisabeth Guazzelli),Ecotectural fluid mechanics(Paul Linden),The success of JFM(Herbert Huppert),最后由Davis教授致闭幕词.

767 citations

Posted Content
TL;DR: This two-part series considers steric effects on diffuse charge dynamics (in the absence of electro-osmotic flow) and two simple models for the charging of a thin double layer, which must form a condensed layer of close-packed ions near the surface at high voltage.
Abstract: The classical Poisson-Boltzmann (PB) theory of electrolytes assumes a dilute solution of point charges with mean-field electrostatic forces. Even for very dilute solutions, however, it predicts absurdly large ion concentrations (exceeding close packing) for surface potentials of only a few tenths of a volt, which are often exceeded, e.g. in microfluidic pumps and electrochemical sensors. Since the 1950s, several modifications of the PB equation have been proposed to account for the finite size of ions in equilibrium, but in this two-part series, we consider steric effects on diffuse charge dynamics (in the absence of electro-osmotic flow). In this first part, we review the literature and analyze two simple models for the charging of a thin double layer, which must form a condensed layer of close-packed ions near the surface at high voltage. A surprising prediction is that the differential capacitance typically varies non-monotonically with the applied voltage, and thus so does the response time of an electrolytic system. In PB theory, the capacitance blows up exponentially with voltage, but steric effects actually cause it to decrease above a threshold voltage where ions become crowded near the surface. Other nonlinear effects in PB theory are also strongly suppressed by steric effects: The net salt adsorption by the double layers in response to the applied voltage is greatly reduced, and so is the tangential "surface conduction" in the diffuse layer, to the point that it can often be neglected compared to bulk conduction (small Dukhin number).

603 citations

Journal ArticleDOI
TL;DR: Critical selection criteria are included for pumps and valves to aid in determining the pumping mechanism that is most appropriate for a given application and important limitations or incompatibilities are addressed.
Abstract: Micropumping has emerged as a critical research area for many electronics and biological applications. A significant driving force underlying this research has been the integration of pumping mechanisms in micro total analysis systems and other multi-functional analysis techniques. Uses in electronics packaging and micromixing and microdosing systems have also capitalized on novel pumping concepts. The present work builds upon a number of existing reviews of micropumping strategies by focusing on the large body of micropump advances reported in the very recent literature. Critical selection criteria are included for pumps and valves to aid in determining the pumping mechanism that is most appropriate for a given application. Important limitations or incompatibilities are also addressed. Quantitative comparisons are provided in graphical and tabular forms.

467 citations