scispace - formally typeset
Search or ask a question
Author

Pablo Serra-Crespo

Bio: Pablo Serra-Crespo is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Adsorption & Metal-organic framework. The author has an hindex of 22, co-authored 35 publications receiving 2824 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new MIL-101 material based on aluminum and containing amine functional groups has been synthesized, which can only be formed in very specific synthesis conditions, where both the metal source and the solvent used play a key role.
Abstract: A new MIL-101 material based on aluminum and containing amine functional groups has been synthesized. The pure phase NH2-MIL-101(Al) can only be formed in very specific synthesis conditions, where both the metal source and the solvent used play a key role. The resulting porous solid shows a high thermal and chemical stability, decomposing at temperatures above 650 K in air. The NH2-MIL-101(Al) framework offers an excellent trade off for separation of CO2: the combination of high stability, acceptable capacity at low adsorbate partial pressures, high selectivity, and fast regenerability makes this new material a very attractive candidate for applications like natural gas or biogas upgrading. CO2 capacities up to 62 wt % are obtained at room temperature and 3 MPa. In addition to an excellent separation performance, the NH2-MIL-101(Al) shows a high activity in the basic catalyzed Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate at 313 K even in an as apolar a solvent as toluene (turn over fre...

469 citations

Journal ArticleDOI
TL;DR: In this article, the influence of different reaction parameters such as solvent, electrolyte, voltage-current density, and temperature on the synthesis yield and textural properties of the MOFs obtained was investigated.
Abstract: Several archetypical metal organic frameworks (MOFs), namely, HKUST-1, ZIF-8, MIL-100(Al), MIL-53(Al), and NH2-MIL-53(Al), were synthesized via anodic dissolution in an electrochemical cell. The influence of different reaction parameters such as solvent, electrolyte, voltage–current density, and temperature on the synthesis yield and textural properties of the MOFs obtained was investigated. The characterization of the samples involved X-ray diffraction, gas adsorption, atomic force microscopy, diffuse reflectance infrared Fourier transform spectroscopy, and scanning electron microscopy. In the present article, we demonstrate that electrochemical synthesis is a robust method offering additional degrees of freedom in the synthesis of these porous materials. The main advantages are the shorter synthesis time, the milder conditions, the facile synthesis of MOF nanoparticles, the morphology tuning and the high Faraday efficiencies. The synthesized MIL-53 and NH2-MIL-53 samples exhibit suppressed framework fle...

353 citations

Journal ArticleDOI
TL;DR: Mixed matrix membranes (MMMs) composed of a glassy polymer and the flexible metal organic framework NH(2)-MIL-53(Al) exhibit excellent separation properties and, in contrast to most reported membranes, CO(2)/CH(4) separation selectivity increases with pressure, related to the flexibility of the filler.

331 citations

Journal ArticleDOI
TL;DR: In this paper, a mixed matrix membrane based on NH 2 -MIL-53(Al) MOF and polyimide was synthesized for CO 2 removal from natural gas and biogas.
Abstract: Mixed matrix membranes (MMMs) composed of metal organic framework (MOF) fi llers embedded in a polymeric matrix represent a promising alternative for CO 2 removal from natural gas and biogas. Here, MMMs based on NH 2 -MIL-53(Al) MOF and polyimide are successfully synthesized with MOF loadings up to 25 wt% and different thicknesses. At 308 K and ? P = 3 bar, the incorporation of the MOF fi ller enhances CO 2 permeability with respect to membranes based on the neat polymer, while preserving the relatively high separation factor. The rate of solvent evaporation after membrane casting proves key for the fi nal confi guration and dispersion of the MOF in the membrane. Fast solvent removal favours the contraction of the MOF structure to its narrow pore framework confi guration, resulting in enhanced separation factor and, particularly, CO 2 permeability. The study reveals an excellent fi llerpolymercontact, with ca. 0.11% void volume fraction, for membranes based on the amino-functionalized MOF, even at high fi ller loadings (25 wt%). By providing precise and quantitative insight into key structural features at the nanoscale range, the approach provides feedback to the membrane casting process and therefore it represents an important advancement towards the rational design of mixed matrix membranes with enhanced structural features and separation performance.

264 citations

Journal ArticleDOI
TL;DR: Metal–organic frameworks are among the most sophisticated nanostructured solids: they often possess high surface areas and pore volumes, with the possibility of finetuning their chemical environment by either selecting the appropriate building blocks or by postsynthetic functionalization.
Abstract: Metal–organic frameworks (MOFs) are among the most sophisticated nanostructured solids: they often possess high surface areas and pore volumes, with the possibility of finetuning their chemical environment by either selecting the appropriate building blocks or by postsynthetic functionalization. For many frameworks, flexibility of the lattice allows them to undergo a significant transformation in solid state.[1] All these features make MOFs a special class of solids with the potential of transcending many common limitations in different technological disciplines, such as ferromagnetism,[2] semiconductivity, gas separation,[3] storage,[4] sensing,[5] catalysis,[ 6] drug delivery,[7] or proton conductivity.[8] However, the crystallization mechanism of these complex structures is far from understood. Notwithstanding the plethora of publications that present new MOFs,[9] and the effectiveness of the high-throughput approach,[10] serendipity still governs the synthesis of new structures.

178 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
TL;DR: This review intends to provide an update of work published since then and focuses on the photoluminescence properties of MOFs and their possible utility in chemical and biological sensing and detection.
Abstract: Metal–organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas A very interesting and well-investigated topic is their optical emission properties and related applications Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011 This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection

3,485 citations

Journal ArticleDOI
TL;DR: Metal Organic Frameworks in Biomedicine Patricia Horcajada, Ruxandra Gref, Tarek Baati, Phoebe K. Allan, Guillaume Maurin, Patrick Couvreur, G erard F erey, Russell E. Morris, and Christian Serre.
Abstract: Metal Organic Frameworks in Biomedicine Patricia Horcajada,* Ruxandra Gref, Tarek Baati, Phoebe K. Allan, Guillaume Maurin, Patrick Couvreur, G erard F erey, Russell E. Morris, and Christian Serre* Institut Lavoisier, UMR CNRS 8180, Universit e de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France Facult e de Pharmacie, UMR CNRS 8612, Universit e Paris-Sud, 92296 Châtenay-Malabry Cedex, France Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Universit e Montpellier 2, 34095 Montpellier cedex 05, France EaStChem School of Chemistry, University of St. Andrews Purdie Building, St Andrews, KY16 9ST U.K.

3,400 citations