scispace - formally typeset
Search or ask a question

Showing papers by "Pablo Tamayo published in 2008"


Journal ArticleDOI
17 Jan 2008-Nature
TL;DR: It is found that partial loss of function of the ribosomal subunit protein RPS14 phenocopies the disease in normal haematopoietic progenitor cells, and also that forced expression of RPS 14 rescues the disease phenotype in patient-derived bone marrow cells.
Abstract: Somatic chromosomal deletions in cancer are thought to indicate the location of tumour suppressor genes, by which a complete loss of gene function occurs through biallelic deletion, point mutation or epigenetic silencing, thus fulfilling Knudson's two-hit hypothesis. In many recurrent deletions, however, such biallelic inactivation has not been found. One prominent example is the 5q- syndrome, a subtype of myelodysplastic syndrome characterized by a defect in erythroid differentiation. Here we describe an RNA-mediated interference (RNAi)-based approach to discovery of the 5q- disease gene. We found that partial loss of function of the ribosomal subunit protein RPS14 phenocopies the disease in normal haematopoietic progenitor cells, and also that forced expression of RPS14 rescues the disease phenotype in patient-derived bone marrow cells. In addition, we identified a block in the processing of pre-ribosomal RNA in RPS14-deficient cells that is functionally equivalent to the defect in Diamond-Blackfan anaemia, linking the molecular pathophysiology of the 5q- syndrome to a congenital syndrome causing bone marrow failure. These results indicate that the 5q- syndrome is caused by a defect in ribosomal protein function and suggest that RNAi screening is an effective strategy for identifying causal haploinsufficiency disease genes.

865 citations


Journal ArticleDOI
25 Sep 2008-Nature
TL;DR: It is shown that the suppression of CDK8 expression inhibits proliferation in colon cancer cells characterized by high levels ofCDK8 and β-catenin hyperactivity, suggesting that therapeutic interventions targeting CDK 8 may confer a clinical benefit in β-Catenin-driven malignancies.
Abstract: Aberrant activation of the canonical WNT/beta-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival. Although dysregulated beta-catenin activity drives colon tumorigenesis, further genetic perturbations are required to elaborate full malignant transformation. To identify genes that both modulate beta-catenin activity and are essential for colon cancer cell proliferation, we conducted two loss-of-function screens in human colon cancer cells and compared genes identified in these screens with an analysis of copy number alterations in colon cancer specimens. One of these genes, CDK8, which encodes a member of the mediator complex, is located at 13q12.13, a region of recurrent copy number gain in a substantial fraction of colon cancers. Here we show that the suppression of CDK8 expression inhibits proliferation in colon cancer cells characterized by high levels of CDK8 and beta-catenin hyperactivity. CDK8 kinase activity was necessary for beta-catenin-driven transformation and for expression of several beta-catenin transcriptional targets. Together these observations suggest that therapeutic interventions targeting CDK8 may confer a clinical benefit in beta-catenin-driven malignancies.

650 citations


Journal ArticleDOI
TL;DR: It is indicated that lenalidomide-responsive patients have a defect in erythroid differentiation, and a strategy for a clinical test to predict patients most likely to respond to the drug is suggested.
Abstract: Background Lenalidomide is an effective new agent for the treatment of patients with myelodysplastic syndrome (MDS), an acquired hematopoietic disorder characterized by ineffective blood cell production and a predisposition to the development of leukemia. Patients with an interstitial deletion of Chromosome 5q have a high rate of response to lenalidomide, but most MDS patients lack this deletion. Approximately 25% of patients without 5q deletions also benefit from lenalidomide therapy, but response in these patients cannot be predicted by any currently available diagnostic assays. The aim of this study was to develop a method to predict lenalidomide response in order to avoid unnecessary toxicity in patients unlikely to benefit from treatment. Methods and Findings Using gene expression profiling, we identified a molecular signature that predicts lenalidomide response. The signature was defined in a set of 16 pretreatment bone marrow aspirates from MDS patients without 5q deletions, and validated in an independent set of 26 samples. The response signature consisted of a cohesive set of erythroid-specific genes with decreased expression in responders, suggesting that a defect in erythroid differentiation underlies lenalidomide response. Consistent with this observation, treatment with lenalidomide promoted erythroid differentiation of primary hematopoietic progenitor cells grown in vitro. Conclusions These studies indicate that lenalidomide-responsive patients have a defect in erythroid differentiation, and suggest a strategy for a clinical test to predict patients most likely to respond to the drug. The experiments further suggest that the efficacy of lenalidomide, whose mechanism of action in MDS is unknown, may be due to its ability to induce erythroid differentiation.

162 citations


Journal ArticleDOI
01 Jul 2008-Brain
TL;DR: Large-scale immunophenotyping approach has yielded robust evidence for a reduction of CD8(low)CD4(-) cells in both CIS and RRMS in the absence of treatment as well as suggestive evidence for the existence of immunologically distinct subsets of subjects with a demyelinating disease.
Abstract: As part of a biomarker discovery effort in peripheral blood, we acquired an immunological profile of cell-surface markers from healthy control and untreated subjects with relapsing-remitting MS (RRMS). Fresh blood from each subject was screened ex vivo using a panel of 50 fluorescently labelled monoclonal antibodies distributed amongst 56 pools of four antibodies each. From these 56 pools, we derived an immunological profile consisting of 1018 'features' for each subject in our analysis using a systematic gating strategy. These profiles were interrogated in an analysis with a screening phase (23 patients) and an extension phase (15 patients) to identify cell populations in peripheral blood whose frequency is altered in untreated RRMS subjects. A population of CD8(low)CD4(-) cells was identified as being reduced in frequency in untreated RRMS subjects (P = 0.0002), and this observation was confirmed in an independent sample of subjects from the Comprehensive Longitudinal Investigation of MS at the Brigham & Women's Hospital (P = 0.002). This reduction in the frequency of CD8(low)CD4(-) cells is also observed in 38 untreated subjects with a clinically isolated demyelination syndrome (CIS) (P = 0.0006). We also show that these differences may be due to a reduction in the CD8(low)CD56(+)CD3(-)CD4(-) subset of CD8(low) cells, which have a natural killer cell profile. Similarities between untreated CIS and RRMS subjects extend to broader immunological profiles: consensus clustering of our data suggests that there are three distinct populations of untreated RRMS subjects and that these distinct phenotypic categories are already present in our sample of untreated CIS subjects. Thus, our large-scale immunophenotyping approach has yielded robust evidence for a reduction of CD8(low)CD4(-) cells in both CIS and RRMS in the absence of treatment as well as suggestive evidence for the existence of immunologically distinct subsets of subjects with a demyelinating disease.

77 citations