scispace - formally typeset
Search or ask a question
Author

Pál Gergely

Bio: Pál Gergely is an academic researcher from University of Debrecen. The author has contributed to research in topics: Glycogen phosphorylase & Phosphorylase kinase. The author has an hindex of 42, co-authored 199 publications receiving 5643 citations. Previous affiliations of Pál Gergely include Hungarian Academy of Sciences & Novartis.


Papers
More filters
Journal ArticleDOI
TL;DR: The cytotoxic effects (apoptosis and necrosis) of peroxynitrite are reviewed focusing on the role of accelerated ADP-ribose turnover and regulatory mechanisms of per oxynitrites-induced cytotoxicity such as antioxidant status, calcium signalling, NFkappaB activation, protein phosphorylation, cellular adaptation are discussed.

453 citations

Journal ArticleDOI
TL;DR: The immunomodulatory potential of BAF312 and the S1P receptor‐mediated effects on heart rate are characterized using preclinical and human data.
Abstract: BACKGROUND AND PURPOSE BAF312 is a next-generation sphingosine 1-phosphate (S1P) receptor modulator, selective for S1P1 and S1P5 receptors. S1P1 receptors are essential for lymphocyte egress from lymph nodes and a drug target in immune-mediated diseases. Here, we have characterized the immunomodulatory potential of BAF312 and the S1P receptor-mediated effects on heart rate using preclinical and human data. EXPERIMENTAL APPROACH BAF312 was tested in a rat experimental autoimmune encephalomyelitis (EAE) model. Electrophysiological recordings of G-protein-coupled inwardly rectifying potassium (GIRK) channels were carried out in human atrial myocytes. A Phase I multiple-dose trial studied the pharmacokinetics, pharmacodynamics and safety of BAF312 in 48 healthy subjects. KEY RESULTS BAF312 effectively suppressed EAE in rats by internalizing S1P1 receptors, rendering them insensitive to the egress signal from lymph nodes. In healthy volunteers, BAF312 caused preferential decreases in CD4+ T cells, Tnaive, Tcentral memory and B cells within 4–6 h. Cell counts returned to normal ranges within a week after stopping treatment, in line with the elimination half-life of BAF312. Despite sparing S1P3 receptors (associated with bradycardia in mice), BAF312 induced rapid, transient (day 1 only) bradycardia in humans. BAF312-mediated activation of GIRK channels in human atrial myocytes can fully explain the bradycardia. CONCLUSION AND IMPLICATIONS This study illustrates species-specific differences in S1P receptor specificity for first-dose cardiac effects. Based on its profound but rapidly reversible inhibition of lymphocyte trafficking, BAF312 may have potential as a treatment for immune-mediated diseases.

248 citations

Journal ArticleDOI
TL;DR: The results indicate that PARP-2 deficiency increases SIRT1 activity in cultured myotubes, however, this increase was not due to changes in NAD(+) levels, but to an increase in SIRT 1 expression, as PARp-2 acts as a direct negative regulator of the SIRT2 promoter.

246 citations

Journal ArticleDOI
01 Oct 2007-Blood
TL;DR: The results suggest that the A(2A) receptor-C/EBPbeta axis is critical for IL-10 production after bacterial infection, and that TRAF6 impairs the potentiating effect of adenosine.

188 citations

Journal ArticleDOI
TL;DR: Recent developments in the synthesis and evaluation of glucopyranosylidene-spiro-thiohydantoin 18 and further anomerically bifunctional glucose derivatives which may be good inhibitors of GP are surveyed.
Abstract: Diabetes is among the largest contributors to global mortality through its long term complications. The worldwide epidemic of type 2 diabetes has been stimulating the quest for new concepts and targets for the treatment of this incurable disease. A new target is glycogen phosphorylase (GP), the main regulatory enzyme in the liver responsible for the control of blood glucose levels. One of several approaches to influence the action of GP is the use of glucose derivatives as active site inhibitors. This field of research commenced 10-15 years ago and, due to joint efforts in computer aided molecular design, organic synthesis, protein crystallography, and biological assays, resulted in glucopyranosylidene-spiro-hydantoin 16 (Ki = 3-4 μM) as the most efficient glucose analog inhibitor of GP of that time. The present paper surveys the recent developments of this field achieved mainly in the last five years: the synthesis and evaluation of glucopyranosylidene-spiro-thiohydantoin 18 (Ki = 5 μM) which has proven equipotent with 16, and is available in gram amounts; furanosylidene- and xylopyranosylidene-spiro-(thio)hydantoins whose ineffectiveness (Ki > 10 μM) confirmed the high specificity of the catalytic site of GP towards the D-glucopyranosyl unit; “open” hydantoins like methyl N-(1-carboxamido-D-glucopyranosyl)carbamate 37 (Ki = 16 > M) and N-acyl-N-(β-Dglucopyranosyl) ureas among them the to date best glucose analog inhibitor N-(2-naphthoyl)-N-(β-D-glucopyranosyl)urea (35, Ki = 0.4 μM) which can also bind to the so-called new allosteric site of GP; C-(β-D-glucopyranosyl)heterocycles (tetrazole, 1,3,4-oxadiazoles, benzimidazole (Ki = 11 μM), and benzothiazole). Iminosugars like isofagomine (45, IC50 = 0.7 μM), noeuromycin (53, IC50 = 4 μM), and azafagomine (54, IC50 = 13.5 μM) also bind strongly to the active site of GP, however, substitution on the nitrogens makes the binding weaker. The natural product five-membered iminosugar DAB (56) exhibited IC50 ∼ 0.4-0.5 μM. Azoloperhydropyridines which can be regarded iminosugar-annelated heterocycles show moderate inhibition of GP: nojiritetrazole 12 (Ki = 53 μM) is the best inhibitor and fewer nitrogens in the five-membered ring weakens the binding. Physiological investigations have been carried out with N-acetyl-β-Dglucopyranosylamine 6, spiro-thiohydantoin 18, isofagomine 45, and DAB 56 to underline the potential use of these compounds in the treatment of type 2 diabetes. Computational methods suggest to synthesize further anomerically bifunctional glucose derivatives which may be good inhibitors of GP.

177 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

Journal ArticleDOI
TL;DR: Understanding the specific molecular events that regulate the production of IL-10 will help to answer the remaining questions that are important for the design of new strategies of immune intervention.
Abstract: Interleukin-10 (IL-10), a cytokine with anti-inflammatory properties, has a central role in infection by limiting the immune response to pathogens and thereby preventing damage to the host. Recently, an increasing interest in how IL10 expression is regulated in different immune cells has revealed some of the molecular mechanisms involved at the levels of signal transduction, epigenetics, transcription factor binding and gene activation. Understanding the specific molecular events that regulate the production of IL-10 will help to answer the remaining questions that are important for the design of new strategies of immune intervention.

2,491 citations

Journal ArticleDOI
TL;DR: It is suggested that the RhoA/ROK pathway is constitutively active in a number of organs under physiological conditions; its aberrations play major roles in several disease states, particularly impacting on Ca2+ sensitization of smooth muscle in hypertension and possibly asthma and on cancer neoangiogenesis and cancer progression.
Abstract: Somlyo, Andrew P., and Avril V. Somlyo. Ca2+ Sensitivity of Smooth Muscle and Nonmuscle Myosin II: Modulated by G Proteins, Kinases, and Myosin Phosphatase. Physiol Rev 83: 1325-1358, 2003; 10.1152...

1,923 citations

Journal ArticleDOI
TL;DR: This Review focuses on pharmacological strategies to attenuate the toxic effects of peroxynitrite, which include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.
Abstract: Peroxynitrite--the product of the diffusion-controlled reaction of nitric oxide with superoxide radical--is a short-lived oxidant species that is a potent inducer of cell death Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia-reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases

1,804 citations