scispace - formally typeset
Search or ask a question
Author

Palanisamy Shanmugam

Bio: Palanisamy Shanmugam is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Ocean color & Radiance. The author has an hindex of 22, co-authored 115 publications receiving 1696 citations. Previous affiliations of Palanisamy Shanmugam include State Oceanic Administration & Korean Ocean Research and Development Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new method called the red tide index (RI) is presented which is capable of identifying potential areas of harmful algal blooms (HABs) from SeaWiFS ocean color measurements representing the typical Case-2 water environments off the Korean and Chinese coasts.

166 citations

Journal ArticleDOI
TL;DR: In this paper, a soft classification method based on linear spectral mixture modelling (LSMM) was proposed to map and monitor the coastal wetland ecosystems of southern India, using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper (TM) image data.

116 citations

Journal ArticleDOI
TL;DR: In this paper, a special emphasis on the determination of the levels of pollution, the identification of vulnerable zones and providing some probable remedial measures for severely impacted coastal zone of Chennai city was given.
Abstract: The levels of hydrological pollution of Chennai coastal zone in the southeastern part of India have been increased in the recent years by an uncontrolled disposal of wastewater and pollutants due to human activities. This study gave a special emphasis on the determination of the levels of pollution, the identification of vulnerable zones and providing some probable remedial measures for severely impacted coastal zone of Chennai city. During the period from September to November 2002, sampling was carried out along the shore in two traverses running in the seaside (surf zone) and landside (coastal aquifer). When sampling efforts took place the middle of the above period experienced a monsoonal storm over Chennai coast that significantly influenced large variations in the pollution level at both traverses in seaside and landside. Analysis of physical, chemical and biological parameter determinations indicated that the concentrations of dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), nutrients (nitrate, nitrite and phosphate), turbidity, maximum probable number (MPN) and chlorophyll a (Chl a) reached notably high levels at all sample locations before monsoonal storm prevailed over these areas during October 2002, which resulted in large fresh water input to the coastal system reducing the levels of pollution to some extent. Analysis of water samples collected during November apparently indicated that the concentrations of above parameters attained abnormal level and often exceeded the permissible limit of international standards. The concentrations of trace/toxic metals such as manganese, copper, nickel, lead, cadmium and cobalt also reached very high levels as a result of their sub-aqueous disposal to these areas, leading to further habitat and ecological destruction. On the other hand, analysis of groundwater samples collected from coastal aquifer for determination of certain chemical parameters such as Ca2+/Mg2+, Cl−/(CO2−3+HCO3-) and the ratio of total alkalinity (TA) and total hardness (TH) revealed that coastal groundwater appeared to be severely contaminated by saltwater intrusion as a result of overexploitation and enormous pressure imposed by monsoonal storm of October. Higher concentrations of toxic elements, for example, lead, nickel, cobalt and cadmium from the influence of industrial wastes and contaminated coastal waters, were also found to deteriorate the quality of coastal aquifer system. Based on detailed examination, four sites including Cuvum estuary, Adyar estuary, Kannikoil and Bharathiyar nagar are identified as highly venerable zones because of receiving a large quantity of municipal and industrial wastes. To reduce severe pollution levels in these areas it is therefore necessary to design and construct the submarine pipeline system to transport and disperse such a large quantity of waste materials to the deep open ocean areas.

96 citations

Journal ArticleDOI
TL;DR: In this article, a bio-optical algorithm was developed to provide accurate assessments of chlorophyll a (Chl a) concentration for detection and mapping of algal blooms from satellite data in optically complex waters, where the presence of suspended sediments and dissolved substances can interfere with phytoplankton signal and thus confound conventional band ratio algorithms.
Abstract: [1] A new bio-optical algorithm has been developed to provide accurate assessments of chlorophyll a (Chl a) concentration for detection and mapping of algal blooms from satellite data in optically complex waters, where the presence of suspended sediments and dissolved substances can interfere with phytoplankton signal and thus confound conventional band ratio algorithms. A global data set of concurrent measurements of pigment concentration and radiometric reflectance was compiled and used to develop this algorithm that uses the normalized water-leaving radiance ratios along with an algal bloom index (ABI) between three visible bands to determine Chl a concentrations. The algorithm is derived using Sea-viewing Wide Field-of-view Sensor bands, and it is subsequently tuned to be applicable to Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua data. When compared with large in situ data sets and satellite matchups in a variety of coastal and ocean waters the present algorithm makes good retrievals of the Chl a concentration and shows statistically significant improvement over current global algorithms (e.g., OC3 and OC4v4). An examination of the performance of these algorithms on several MODIS/Aqua images in complex waters of the Arabian Sea and west Florida shelf shows that the new algorithm provides a better means for detecting and differentiating algal blooms from other turbid features, whereas the OC3 algorithm has significant errors although yielding relatively consistent results in clear waters. These findings imply that, provided that an accurate atmospheric correction scheme is available to deal with complex waters, the current MODIS/Aqua, MERIS and OCM data could be extensively used for quantitative and operational monitoring of algal blooms in various regional and global waters.

85 citations

Journal ArticleDOI
TL;DR: In this article, the spatial and temporal aspects of C. polykrikoides blooms were analyzed from SeaWiFS ocean color imagery collected over the period 1998-2002.

82 citations


Cited by
More filters
Journal ArticleDOI

1,484 citations

Journal Article
TL;DR: In this paper, complete optical absorption and fluorescence spectra were collected for a diverse suite of 0.2-μm-filtered marine, riverine, and estuarine waters, as well as for colored dissolved organic matter (CDOM) isolated from several of these waters by solid phase C 18 extraction.
Abstract: Complete optical absorption and fluorescence spectra were collected for a diverse suite of 0.2-μm-filtered marine, riverine, and estuarine waters, as well as for colored dissolved organic matter (CDOM) isolated from several of these waters by solid-phase C 18 extraction. Absorption and fluorescence parameters for these samples are reported. For surface waters, variations in the fluorescence quantum yields obtained with 355- and 337-nm excitation fell within a narrow window (< 2.5-fold variation about the mean values), demonstrating that fluorescence measurements can be used to determine absorption coefficients of CDOM in the ultraviolet region with reasonably good accuracy. Methods for predicting absorption coefficients and line shapes from the fluorescence data are introduced and tested. The absorption and fluorescence spectra of CDOM extracted from some seawaters differed significantly from those of the original waters, demonstrating that material isolated by hydrophobic adsorption is not necessarily representative of the suite of colored organic matter present in aquatic systems. These results clearly illustrate that great care must be taken when extracted material is used to infer the optical properties of natural waters

678 citations

Journal ArticleDOI
16 Aug 2016-Sensors
TL;DR: The commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters, including chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygendemand (COD).
Abstract: Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

554 citations

Journal ArticleDOI
TL;DR: An overview of the state of the art in atmospheric correction algorithms is provided, recent advances are highlighted and the possible potential for hyperspectral data to address the current challenges is discussed.
Abstract: Accurate correction of the corrupting effects of the atmosphere and the water’s surface are essential in order to obtain the optical, biological and biogeochemical properties of the water from satellite-based multi- and hyper-spectral sensors. The major challenges now for atmospheric correction are the conditions of turbid coastal and inland waters and areas in which there are strongly-absorbing aerosols. Here, we outline how these issues can be addressed, with a focus on the potential of new sensor technologies and the opportunities for the development of novel algorithms and aerosol models. We review hardware developments, which will provide qualitative and quantitative increases in spectral, spatial, radiometric and temporal data of the Earth, as well as measurements from other sources, such as the Aerosol Robotic Network for Ocean Color (AERONET-OC) stations, bio-optical sensors on Argo (Bio–Argo) floats and polarimeters. We provide an overview of the state of the art in atmospheric correction algorithms, highlight recent advances and discuss the possible potential for hyperspectral data to address the current challenges.

490 citations

01 Apr 1994
TL;DR: In this paper, seven models for computing underwater radiances and irradiances by numerical solution of the radiative transfer equation are compared and applied to the solution of several problems drawn from optical oceanography.
Abstract: Seven models for computing underwater radiances and irradiances by numerical solution of the radiative transfer equation are compared. The models are applied to the solution of several problems drawn from optical oceanography. The problems include highly absorbing and highly scattering waters, scattering by molecules and by particulates, stratified water, atmospheric effects, surface-wave effects, bottom effects, and Raman scattering. The models provide consistent output, with errors (resulting from Monte Carlo statistical fluctuations) in computed irradiances that are seldom larger, and are usually smaller, than the experimental errors made in measuring irradiances when using current oceanographic instrumentation. Computed radiances display somewhat larger errors.

418 citations