scispace - formally typeset
Search or ask a question
Author

Pallab Sinha Mahapatra

Bio: Pallab Sinha Mahapatra is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Heat transfer & Wetting. The author has an hindex of 17, co-authored 68 publications receiving 760 citations. Previous affiliations of Pallab Sinha Mahapatra include Kimberly-Clark & University of Illinois at Chicago.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a facile and scalable approach for accelerated removal of condensate on a vertical plate during condensation of water vapor in the presence of non-condensable gases.

124 citations

Journal ArticleDOI
TL;DR: In this article, the analysis of a typical system is demonstrated considering bottom-heating, porous medium and Cu-water nanofluid, and the results reveal that the heat transport of base liquid is greatly influenced by these parameters.

80 citations

Journal ArticleDOI
TL;DR: In this article, heat transfer and entropy generation characteristics are numerically investigated in the presence of single and double obstructive blocks within a square enclosure, and it is found that the adiabatic block(s) enhance the heat transfer marginally up to a critical size in a convection-dominated regime.
Abstract: In the present work, heat transfer and entropy generation characteristics are numerically investigated in presence of single and double obstructive blocks within a square enclosure. It is found that the adiabatic block(s) enhance(s) the heat transfer marginally up to a critical size in a convection-dominated regime. On the other hand, the enhancement parameter is observed to be more with an increase in block size in a lower range of Rayleigh numbers for an isothermal block. The entropy generation for thermal irreversibility is observed to be several orders higher than that due to viscous dissipation in all cases.

62 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the transport of a glycerin droplet on an open wettability gradient surface with control of wetability and confinement, and found that droplet behavior changes for different wETability confinements and gradients of the track.
Abstract: Surface tension driven droplet transport in an open surface is increasingly becoming popular for various microfluidic applications. In this work, efficient transport of a glycerin droplet on an open wettability gradient surface with controlled wettability and confinement is numerically investigated. Nondimensional track width w* (ratio of the width of the wettability gradient track w and the initial droplet diameter d0) of a wettability gradient track laid on a superhydrophobic background represents wettability confinement. A lower value of w* represents higher wettability confinement. Droplet behavior changes for different wettability confinements and gradients of the track. It is found that droplet velocity is a function of the wettability confinement and the gradient; droplet transport velocity is maximum for w* = 0.8. Higher confinement (w* 0.6 irrespective of the wettability gradient of the track. These findings provide valuable insight into efficient droplet manipulation in microfluidic devices.

58 citations

Journal ArticleDOI
TL;DR: In this article, the performance comparison between two Pulsating Heat Pipes (FPPHP) and CTPHP was made based on the flow regimes and corresponding thermal performances at heat inputs varying from 20W to 180W with filling ratios of 40, 60, and 80%.

56 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jan 2007

1,932 citations

01 Jan 2016
TL;DR: The numerical heat transfer and fluid flow is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you for reading numerical heat transfer and fluid flow. Maybe you have knowledge that, people have search numerous times for their favorite books like this numerical heat transfer and fluid flow, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their computer. numerical heat transfer and fluid flow is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the numerical heat transfer and fluid flow is universally compatible with any devices to read.

1,531 citations

Book ChapterDOI
28 Jan 2005
TL;DR: The Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K), thermal diffusivity: α, ≡ k/(ρ · Cp) (m /s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K).
Abstract: Geometry: shape, size, aspect ratio and orientation Flow Type: forced, natural, laminar, turbulent, internal, external Boundary: isothermal (Tw = constant) or isoflux (q̇w = constant) Fluid Type: viscous oil, water, gases or liquid metals Properties: all properties determined at film temperature Tf = (Tw + T∞)/2 Note: ρ and ν ∝ 1/Patm ⇒ see Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: μ, (N · s/m) kinematic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K) thermal diffusivity: α, ≡ k/(ρ · Cp) (m/s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K)

636 citations