scispace - formally typeset
Search or ask a question
Author

Pallavi Dwivedi

Bio: Pallavi Dwivedi is an academic researcher from Indian Institute of Technology Roorkee. The author has contributed to research in topics: Xylanase & Laccase. The author has an hindex of 7, co-authored 9 publications receiving 271 citations. Previous affiliations of Pallavi Dwivedi include Sir Padampat Singhania University.

Papers
More filters
Journal ArticleDOI
TL;DR: An overall improvement of 21%, 8%, 3%, and 5% respectively in kappa number, brightness, yellowness, and viscosity of pulp was achieved under derived bleaching conditions.
Abstract: Mixed enzyme preparation having both xylanase and laccase activity was evaluated for its bleach enhancing ability of mixed wood pulp. The enzyme was produced through co-cultivation of mutant Penicillium oxalicum SAU(E)-3.510 and Pleurotus ostreatus MTCC 1804 under solid-state fermentation. Bleaching of pulp with mixed enzyme had resulted into a notable decrease in kappa number and increased brightness as compared to xylanase alone. Analysis of bleaching conditions had denoted that 8 IU g(-1) of mixed enzyme preparation (xylanase/laccase, 22:1) had led into maximal removal of lignin from pulp when bleaching was performed at 10% pulp consistency (55 degrees C, pH 9.0) for 3 h. An overall improvement of 21%, 8%, 3%, and 5% respectively in kappa number, brightness, yellowness, and viscosity of pulp was achieved under derived bleaching conditions. Process of enzymatic bleaching was further ascertained by analyzing the changes occurring in polysaccharide and lignin by HPLC and FTIR. The UV absorption spectrum of the compounds released during enzymatic treatment had denoted a characteristic peak at 280 nm, indicating the presence of lignin in released coloring matter. The changes in fiber morphology following enzymatic delignification were studied by scanning electron microscopy.

66 citations

Journal ArticleDOI
TL;DR: Improved levels of xylanase and laccase biosynthesis were achieved by co-culturing the mutant P. ostreatus MTCC 1804, which appears productive for the development of mixed enzyme preparation with tremendous potential for biobleaching.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the shape and texture of loofa sponge, which was obtained from the mature dried fruit of Luffa cylindrica, remained intact after its treatment with buffers of varying pH and following its repeated autoclaving for up to four cycles (121°C, 20min per cycle).

44 citations

Journal ArticleDOI
TL;DR: An environmentally sound biobleaching to get high quality paper pulp from mixed wood pulp was attempted employing laccase from Aspergillus fumigatus VkJ2.4 as discussed by the authors.
Abstract: An environmentally sound biobleaching to get high quality paper pulp from mixed wood pulp was attempted employing laccase from Aspergillus fumigatus VkJ2.4.5 for lignin removal. Laccase treatment was performed in the presence of a mediator N-hydroxybenzotriazole (HBT, 1.5% w/w), resulting into notably higher level of delignification of the pulp. Enzyme at 10 Ug−1 of pulp at 50°C, pH 6.0, for 2 h with a pulp consistency of 10% was found suitable for enabling maximum decrease in the kappa number. The kappa number and yellowness decreased by 14 and 4% whereas ISO brightness improved by 7%. The presence of a characteristic peak at 280 nm indicated the presence of lignin in the effluent during biobleaching. Analysis of FTIR spectra of residual lignin revealed characteristic modifications following enzymatic bleaching by laccase mediator system (LMS). Variations in morphology and crystallinity of pulp were evaluated by scanning electron microscopy and X-ray diffraction analysis.

43 citations

Journal ArticleDOI
TL;DR: The feasibility of using congress grass and water hyacinth as low cost raw materials for xylanase production from mutant Penicillium oxalicum SAU E -3.510 in submerged fermentation is confirmed to save costs of the enzyme production process.
Abstract: The use of congress grass ( Parthenium sp.) and water hyacinth ( Eichhornia crassipes ) as low cost raw materials for xylanase production from mutant Penicillium oxalicum SAU E -3.510 in submerged fermentation was investigated. For development of mutant from wild type P. oxalicum SA-8 ITCC 6024, a strategy of mixed mutagenesis was followed using UV-irradiation and ethidium bromide, which had resulted into 1.87 fold increases in the activity of the enzyme. For enzyme production, the fungus was cultivated in mineral medium containing congress grass as carbon source. Considerably higher levels of production (475.2 ± 6.0 IU ml −1 ) were achieved in media containing congress grass, although it was slightly less than that was obtained (488.5 ± 6.5 IU ml −1 ) in presence of commercial oat spelt xylan. This fact confirms the feasibility of using this low cost non-food resource as an alternative carbon source to save costs of the enzyme production process. Maximum xylanase activity was reported at 55 °C with its stability at 80 °C for 2 h. The highest activity of xylanase at pH 9.0 and its stability at similar pH for 24 h denote the alkalitolerant nature of enzyme.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The various hemicelluloses structures present in lignocellulose, the range of pre-treatment and hydrolysis options including the enzymatic ones, and the role of different microbial strains on process integration aiming to reach a meaningful consolidated bioprocessing are reviewed.

1,355 citations

Journal ArticleDOI
TL;DR: This review will discuss lactic acid producers with relation to their fermentation characteristics and metabolism, and introduces inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops.

762 citations

Journal ArticleDOI
23 Aug 2013
TL;DR: This article overviews the enzymes produced by microorganisms, which have been extensively studied worldwide for their isolation, purification and characterization of their specific properties, and proven their utility in bio-industries such as food, leather, textiles, animal feed, and inBio-conversions and bio-remediations.
Abstract: This article overviews the enzymes produced by microorganisms, which have been extensively studied worldwide for their isolation, purification and characterization of their specific properties. Researchers have isolated specific microorganisms from extreme sources under extreme culture conditions, with the objective that such isolated microbes would possess the capability to bio-synthesize special enzymes. Various Bio-industries require enzymes possessing special characteristics for their applications in processing of substrates and raw materials. The microbial enzymes act as bio-catalysts to perform reactions in bio-processes in an economical and environmentally-friendly way as opposed to the use of chemical catalysts. The special characteristics of enzymes are exploited for their commercial interest and industrial applications, which include: thermotolerance, thermophilic nature, tolerance to a varied range of pH, stability of enzyme activity over a range of temperature and pH, and other harsh reaction conditions. Such enzymes have proven their utility in bio-industries such as food, leather, textiles, animal feed, and in bio-conversions and bio-remediations.

249 citations

Journal ArticleDOI
TL;DR: The recently discovered novel class of recalcitrant poly Saccharide degraders‐lytic polysaccharide monooxygenases (LPMOs) are presented, because of these enzymes importance in the cellulose degradation process.
Abstract: This review aims to present current knowledge of the fungi involved in lignocellulose degradation with an overview of the various classes of lignocellulose-acting enzymes engaged in the pretreatment and saccharification step. Fungi have numerous applications and biotechnological potential for various industries including chemicals, fuel, pulp, and paper. The capability of fungi to degrade lignocellulose containing raw materials is due to their highly effective enzymatic system. Along with the hydrolytic enzymes consisting of cellulases and hemicellulases, responsible for polysaccharide degradation, they have a unique nonenzymatic oxidative system which together with ligninolytic enzymes is responsible for lignin modification and degradation. An overview of the enzymes classification is given by the Carbohydrate-Active enZymes (CAZy) database as the major database for the identification of the lignocellulolytic enzymes by their amino acid sequence similarity. Finally, the recently discovered novel class of recalcitrant polysaccharide degraders-lytic polysaccharide monooxygenases (LPMOs) are presented, because of these enzymes importance in the cellulose degradation process.

238 citations

Journal ArticleDOI
TL;DR: The present manuscript is dedicated to reviewing the most commonly applied “green” pretreatment processes used in bioconversion of lignocellulosic biomasses within the “biorefinery” concept.
Abstract: Lignocellulosic biomass is the most abundant, low-cost, bio-renewable resource that holds enormous importance as alternative source for production of biofuels and other biochemicals that can be utilized as building blocks for production of new materials. Enzymatic hydrolysis is an essential step involved in the bioconversion of lignocellulose to produce fermentable monosaccharides. However, to allow the enzymatic hydrolysis, a pretreatment step is needed in order to remove the lignin barrier and break down the crystalline structure of cellulose. The present manuscript is dedicated to reviewing the most commonly applied "green" pretreatment processes used in bioconversion of lignocellulosic biomasses within the "biorefinery" concept. In this frame, the effects of different pretreatment methods on lignocellulosic biomass are described along with an in-depth discussion on the benefits and drawbacks of each method, including generation of potentially inhibitory compounds for enzymatic hydrolysis, effect on cellulose digestibility, and generation of compounds toxic for the environment, and energy and economic demand.

205 citations