scispace - formally typeset
Search or ask a question

Showing papers by "Pallu Reddanna published in 2012"


Journal ArticleDOI
TL;DR: A comprehensive review on structure based drug design strategies in the development of novel 5-LOX inhibitors is presented in this article.
Abstract: Lipoxygenases (LOXs) are non-heme iron containing dioxygenases involved in the oxygenation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA). Depending on the position of insertion of oxygen, LOXs are classified into 5-, 8-, 9-, 12- and 15-LOX. Among these, 5-LOX is the most predominant isoform associated with the formation of 5-hydroperoxyeicosatetraenoic acid (5- HpETE), the precursor of non-peptido (LTB4) and peptido (LTC4, LTD4, and LTE4) leukotrienes. LTs are involved in inflammatory and allergic diseases like asthma, ulcerative colitis, rhinitis and also in cancer. Consequently 5-LOX has become target for the development of therapeutic molecules for treatment of various inflammatory disorders. Zileuton is one such inhibitor of 5-LOX approved for the treatment of asthma. In the recent times, computer aided drug design (CADD) strategies have been applied successfully in drug development processes. A comprehensive review on structure based drug design strategies in the development of novel 5-LOX inhibitors is presented in this article. Since the crystal structure of 5-LOX has been recently solved, efforts to develop 5-LOX inhibitors have mostly relied on ligand based rational approaches. The present review provides a comprehensive survey on these strategies in the development of 5-LOX inhibitors.

131 citations


Journal ArticleDOI
TL;DR: GA induced apoptosis in K562 cells involves death receptor and mitochondrial-mediated pathways by inhibiting BCR/ABL kinase, NF-κB activity and COX-2.

67 citations


Journal ArticleDOI
TL;DR: AFCQ is a COX and 5-LOX inhibitor isolated from the stems of Cissus quadrangularis, which effectively downregulate the iNOS, TNFα, and upregulation of HO-1.

52 citations


Journal ArticleDOI
TL;DR: Testing these variants facilitates tailoring of the 6-MP therapy in children with ALL and suggests that apart from the individual effect of ITPA 94 C→A, epistatic interactions between the variations of TPMT (*3C, *12) and ITPA (ex2, ex3) are associated with the6-MP toxicity.
Abstract: To explore the role of genetic variants of thiopurine methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) in 6-mercaptopurine (6-MP)-induced toxicity in Indian children with acute lymphoblastic leukemia (ALL). Children with ALL receiving 6-MP in maintenance phase of treatment (n = 90) were enrolled in the study. Bidirectional sequencing of TPMT (whole gene) and ITPA (exon 2, exon 3, and intron 2) was undertaken, and correlation between genotype and 6-MP toxicity was assessed. Five variations were observed in TPMT, including two exonic variations, TPMT*12 (374 C > T) and TPMT*3C (719A > G), and three intronic, intron 3 (12356 C > T), intron 4 (16638 C > T), and TPMT rs2842949. Two exonic, ITPA exon −2 (94 C → A) and exon 3 of ITPA (138 G > A), and one intronic, ITPA intron 2 (A→C), variations were observed in ITPA. Multifactor dimensionality reduction analysis of all the genetic variants showed independent association of ITPA 94 C→A as well as synergic epistatic interactions, i.e., TPMT*12 × ITPA ex3, ITPA ex2 × TPMT*12 × ITPA ex3, and TPMT*3C × ITPA ex2 × TPMT*12 × ITPA ex3, in determining hematological toxicity. This is further substantiated by a multiple linear regression model, which showed moderate predictability of toxicity with these variants (area under the curve = 0.70, p = 0.004). Our results suggest that apart from the individual effect of ITPA 94 C→A, epistatic interactions between the variations of TPMT (*3C, *12) and ITPA (ex2, ex3) are associated with the 6-MP toxicity. Testing these variants facilitates tailoring of the 6-MP therapy in children with ALL.

35 citations


Journal ArticleDOI
TL;DR: The divergent effects of hydroxy and hydroperoxy products of 15-LOX on angiogenesis are indicated, highlighting the role of these products in the co-dependence of inflammation andAngiogenesis.
Abstract: Objective 15(S)-Hydroxyeicosatetraenoic acid [15(S)-HETE] and 15(S)-hydroperoxyeicosatetraenoic acid [15(S)-HPETE] are the products of arachidonic acid formed in the 15-lipoxygenase pathway. They have opposing effects on the inflammatory process. The present study was designed to examine the role of these metabolites on angiogenesis, which is critically associated with inflammatory conditions.

29 citations


Journal ArticleDOI
TL;DR: Gene-gene interaction between thiopurine and folate pathways inflate the 6-mercaptopurine-mediated toxicity in Indian children with ALL illustrating the importance of ethnicity in the toxicity of 6-MP.
Abstract: Aim: The rationale of this study was to explore the contribution of genetic variants of the folate pathway to toxicity of 6-mercaptopurine (6-MP)-mediated hematological toxicity in children with acute lymphoblastic leukemia (ALL) and to explore the interaction of these variants with TPMT and ITPA haplotypes using multifactor dimensionality reduction ana lysis. Materials & methods: Children with ALL (n = 96) were screened for GCPII C1561T, RFC1 G80A, cSHMT C1420T, TYMS 5’-UTR 2R3R, TYMS 3’-UTR ins6/del6, MTHFR C677T, MTR A2756G polymorphisms using PCR-RFLP and PCR-amplified fragment length polymorphism techniques. Results: GCPII C1561T showed independent association with toxicity. The following synergetic interactions appeared to increase the toxicity of 6-mercaptopurine: TPMT*12 × RFC1 G80A; TPMT CTTAT haplotype × RFC1 G80A; TPMT CTTAT haplotype × RFC1 G80A × TYMS 2R3R. The genetic variants of thiopurine and folate pathway cumulatively appeared to increase the predictability of toxicity (r 2 = 0.41) in a multiple linear regression model. For the observed toxicity grades of 1, 2 , 3 and 4, the respective predicted toxicity grades were 1.65 ± 0.29, 1.68 ± 0.24, 2.56 ± 0.58 and 2.99 ± 1.03, p trend < 0.0001. Conclusion: Gene–gene interaction between thiopurine and folate pathways inflate the 6-MP-mediated toxicity in Indian children with ALL illustrating the importance of ethnicity in the toxicity of 6-MP. Original submitted 3 January 2012; Revision submitted 23 April 2012

27 citations


Journal ArticleDOI
TL;DR: The present application of QM/MM-based FEP method for structurally diverse set of analogs serves to enhance the scope of FEP process and demonstrate the utility of the method for its potential in drug discovery.
Abstract: A quantum mechanics (QM)/molecular mechanics (MM)-based free energy perturbation (FEP) method, developed recently, provides most accurate estimation of binding affinities. The validity of the method was evaluated for a large set of diverse inhibitors for fructose 1,6-bisphosphatase (FBPase), a target enzyme for type-II diabetes mellitus. The validation set comprises of 22 important structurally different mutations. The calculated relative binding free energies using the QM/MM-based FEP method reproduce the experimental values with exceptional precision of less than ±0.5 kcal/mol. The CPU requirements for QM/MM-based FEP are about fivefold greater than conventional FEP methods, but it is superior in accuracy of predictions. In addition, the QM/MM-based FEP method eliminates the need for time-consuming development of MM force field parameters, which are frequently required for novel inhibitors described by MM. Future automation of the method and parallelization of the code for 128/256/512 cluster computers is expected to enhance the speed and increase its use for drug design and lead optimization. The present application of QM/MM-based FEP method for structurally diverse set of analogs serves to enhance the scope of FEP method and demonstrate the utility of QM/MM-based FEP method for its potential in drug discovery.

17 citations


Journal ArticleDOI
TL;DR: The results suggest mitochondrial swelling in FHF induced rats and the inhibition of the respiratory complexes III and I and pyruvate dehydrogenase might lead to the increased production of free radical resulting in oxidative stress and cerebral energy disturbances thereby leading to mitochondrial swelling and further contributing to the pathogenesis of FHF.
Abstract: Fulminant hepatic failure (FHF) is an acute form of hepatic encephalopathy resulting from severe inflammatory or necrotic liver damage without any previously established liver damage. This develops as a complication due to viral infections, and drug abuse. FHF also occurs in acute disorders like Reye’s syndrome. Although the exact mechanisms in the etiology of FHF are not understood, elevated levels of brain ammonia have been consistently reported. Such increased ammonia levels are suggested to alter neurotransmission signals and impair cerebral energy metabolism due to mitochondrial dysfunctions. In the present study we have examined the role of cerebral electron transport chain complexes, including complex I, II, III IV, and pyruvate dehydrogenase in the non-synaptic mitochondria isolated from the cortex of the thioacetamide-induced FHF rats. Further, we have examined if the structure of mitochondria is altered. The results of the current study demonstrated a decrease in the activity of the complex I by 31 and 48% at 18 and 24 h respectively after the thioacetamide injection. Similarly, the activity of electron transport chain complex III was inhibited by 35 and 52% respectively, at 18 and 24 h, respectively. The complex II and complex IV, on the other hand, revealed unaltered activity. Further the activity of pyruvate dehydrogenase at 18 and 24 h after the induction of FHF was inhibited by 29 and 43%, respectively. Our results also suggest mitochondrial swelling in FHF induced rats. The inhibition of the respiratory complexes III and I and pyruvate dehydrogenase might lead to the increased production of free radical resulting in oxidative stress and cerebral energy disturbances thereby leading to mitochondrial swelling and further contributing to the pathogenesis of FHF.

14 citations


Journal ArticleDOI
TL;DR: Biological results supported the in silico prediction with compound 4k exhibiting good inhibition with IC(50) value of 8 μM against 5-LOX and further studies demonstrated the protective effect of 4k in mouse Acute Lung Injury model induced by lipopolysaccharide (LPS).

13 citations