scispace - formally typeset
Search or ask a question
Author

Pallu Reddanna

Bio: Pallu Reddanna is an academic researcher from University of Hyderabad. The author has contributed to research in topics: Arachidonic acid & Lipoxygenase. The author has an hindex of 43, co-authored 190 publications receiving 5909 citations. Previous affiliations of Pallu Reddanna include Sri Venkateswara University & Yahoo!.


Papers
More filters
Journal ArticleDOI
TL;DR: Chebulagic acid, a COX-2 and 5-LOX dual inhibitor isolated from the fruits of Terminalia chebula, induces apoptosis in COLO-205 cells.

141 citations

Journal ArticleDOI
TL;DR: Data from an LPS rat model are consistent with oxidative stress as a major causal factor in altered steroidogenesis, spermatogenesis, and perhaps male infertility during endotoxin-induced acute inflammation.

137 citations

Journal ArticleDOI
TL;DR: A comprehensive review on structure based drug design strategies in the development of novel 5-LOX inhibitors is presented in this article.
Abstract: Lipoxygenases (LOXs) are non-heme iron containing dioxygenases involved in the oxygenation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA). Depending on the position of insertion of oxygen, LOXs are classified into 5-, 8-, 9-, 12- and 15-LOX. Among these, 5-LOX is the most predominant isoform associated with the formation of 5-hydroperoxyeicosatetraenoic acid (5- HpETE), the precursor of non-peptido (LTB4) and peptido (LTC4, LTD4, and LTE4) leukotrienes. LTs are involved in inflammatory and allergic diseases like asthma, ulcerative colitis, rhinitis and also in cancer. Consequently 5-LOX has become target for the development of therapeutic molecules for treatment of various inflammatory disorders. Zileuton is one such inhibitor of 5-LOX approved for the treatment of asthma. In the recent times, computer aided drug design (CADD) strategies have been applied successfully in drug development processes. A comprehensive review on structure based drug design strategies in the development of novel 5-LOX inhibitors is presented in this article. Since the crystal structure of 5-LOX has been recently solved, efforts to develop 5-LOX inhibitors have mostly relied on ligand based rational approaches. The present review provides a comprehensive survey on these strategies in the development of 5-LOX inhibitors.

131 citations

Journal ArticleDOI
TL;DR: A hypothesis that activation of Akt-T308 phosphorylation in the presence of high ATP:AMP ratio promotes the stability of its phosphorylations and activates mTORC1 and the energy consuming biosynthetic processes is presented.
Abstract: The serine threonine protein kinase, Akt, is at the central hub of signaling pathways that regulates cell growth, differentiation, and survival. The reciprocal relation that exists between the two activating phosphorylation sites of Akt, T308 and S473, and the two mTOR complexes, C1 and C2, forms the central controlling hub that regulates these cellular functions. In our previous review “PI3Kinase (PI3K)-AKT-mTOR and Wnt signaling pathways in cell cycle” we discussed the reciprocal relation between mTORC1 and C2 complexes in regulating cell metabolism and cell cycle progression in cancer cells. We present in this article, a hypothesis that activation of Akt-T308 phosphorylation in the presence of high ATP:AMP ratio promotes the stability of its phosphorylations and activates mTORC1 and the energy consuming biosynthetic processes. Depletion of energy leads to inactivation of mTORC1, activation of AMPK, FoxO, and promotes constitution of mTORC2 that leads to phosphorylation of Akt S473. Akt can also be activated independent of PI3K; this appears to have an advantage under situations like dietary restrictions, where insulin/insulin growth factor signaling could be a casualty.

129 citations

Journal ArticleDOI
TL;DR: Tryptic digestion and peptide mapping of 5‐lipoxygenase‐vitamin E complex indicate that vitamin E binds strongly to a single peptide, suggesting that cellular vitamin E levels may have profound influence on the formation of leukotrienes.

129 citations


Cited by
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: This review focuses on biochemical concepts of lipidPeroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting geneexpression and promoting cell death.
Abstract: Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.

3,647 citations

Journal ArticleDOI
TL;DR: The biochemical functions of GST are described to show how individual isoenzymes contribute to resistance to carcinogens, antitumor drugs, environmental pollutants, and products of oxidative stress, and to allow identification of factors that may modulate resistance to specific noxious chemicals.
Abstract: The glutathione S-transferases (GST) represent a major group of detoxification enzymes. All eukaryotic species possess multiple cytosolic and membrane-bound GST isoenzymes, each of which displays distinct catalytic as well as noncatalytic binding properties: the cytosolic enzymes are encoded by at least five distantly related gene families (designated class alpha, mu, pi, sigma, and theta GST), whereas the membrane-bound enzymes, microsomal GST and leukotriene C, synthetase, are encoded by single genes and both have arisen separately from the soluble GST. Evidence suggests that the level of expression of GST is a crucial factor in determining the sensitivity of cells to a broad spectrum of toxic chemicals. In this article the biochemical functions of GST are described to show how individual isoenzymes contribute to resistance to carcinogens, antitumor drugs, environmental pollutants, and products of oxidative stress.A description of the mechanisms of transcriptional and posttranscriptional regulat...

3,516 citations