scispace - formally typeset
Search or ask a question
Author

Pamela M. Odorizzi

Bio: Pamela M. Odorizzi is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Cytotoxic T cell & CD8. The author has an hindex of 18, co-authored 26 publications receiving 4761 citations. Previous affiliations of Pamela M. Odorizzi include University of California, San Francisco.
Topics: Cytotoxic T cell, CD8, T cell, Immune system, Antigen

Papers
More filters
Journal ArticleDOI
16 Apr 2015-Nature
TL;DR: Major tumour regressions are reported in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody and radiation and reproduced this effect in mouse models, showing that PD-L1 on melanoma cells allows tumours to escape anti- NCTLA4-based therapy, and the combination of radiation, anti- CTLA4 and anti-PD-L 1 promotes response and immunity through distinct mechanisms.
Abstract: Immune checkpoint inhibitors result in impressive clinical responses, but optimal results will require combination with each other and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here we report major tumour regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation, and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumours, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T-cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires radiation, anti-CTLA4 and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T-regulatory cells (Treg cells), thereby increasing the CD8 T-cell to Treg (CD8/Treg) ratio. Radiation enhances the diversity of the T-cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while radiation shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T-cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligoclonal T-cell expansion. Similarly to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to radiation plus anti-CTLA4, demonstrated persistent T-cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumours to escape anti-CTLA4-based therapy, and the combination of radiation, anti-CTLA4 and anti-PD-L1 promotes response and immunity through distinct mechanisms.

1,872 citations

Journal ArticleDOI
02 Dec 2016-Science
TL;DR: The data indicate that epigenetic fate inflexibility may limit current immunotherapies, and PD-1 pathway blockade resulted in transcriptional rewiring and reengagement of effector circuitry in the TEX epigenetic landscape.
Abstract: Blocking Programmed Death–1 (PD-1) can reinvigorate exhausted CD8 T cells (T EX ) and improve control of chronic infections and cancer However, whether blocking PD-1 can reprogram T EX into durable memory T cells (T MEM ) is unclear We found that reinvigoration of T EX in mice by PD-L1 blockade caused minimal memory development After blockade, reinvigorated T EX became reexhausted if antigen concentration remained high and failed to become T MEM upon antigen clearance T EX acquired an epigenetic profile distinct from that of effector T cells (T EFF ) and T MEM cells that was minimally remodeled after PD-L1 blockade This finding suggests that T EX are a distinct lineage of CD8 T cells Nevertheless, PD-1 pathway blockade resulted in transcriptional rewiring and reengagement of effector circuitry in the T EX epigenetic landscape These data indicate that epigenetic fate inflexibility may limit current immunotherapies

851 citations

Journal ArticleDOI
30 Nov 2012-Science
TL;DR: It is demonstrated that the T-box transcription factors T-bet and Eomesodermin differentially regulate two phenotypically and functionally distinct subsets of antiviral CD8+ T cells in mice, which may be important for antiviral immunity during chronic viral infections in humans.
Abstract: Chronic infections strain the regenerative capacity of antiviral T lymphocyte populations, leading to failure in long-term immunity. The cellular and molecular events controlling this regenerative capacity, however, are unknown. We found that two distinct states of virus-specific CD8+ T cells exist in chronically infected mice and humans. Differential expression of the T-box transcription factors T-bet and Eomesodermin (Eomes) facilitated the cooperative maintenance of the pool of antiviral CD8+ T cells during chronic viral infection. T-bethi cells displayed low intrinsic turnover but proliferated in response to persisting antigen, giving rise to Eomeshi terminal progeny. Genetic elimination of either subset resulted in failure to control chronic infection, which suggests that an imbalance in differentiation and renewal could underlie the collapse of immunity in humans with chronic infections.

717 citations

Journal ArticleDOI
16 Aug 2016-Immunity
TL;DR: A key metabolic control event early in exhaustion is highlighted and it is suggested that manipulating glycolytic and mitochondrial metabolism might enhance checkpoint blockade outcomes.

511 citations

Journal ArticleDOI
20 Feb 2014-Immunity
TL;DR: This study defined the phenotypic, functional, and molecular profiles of exhausted CD4(+) T cells and demonstrated unappreciated roles for transcription factors (TFs) including Helios, type I interferon (IFN-I) signaling, and a diverse set of coinhibitory and costimulatory molecules during CD4 (+) T cell exhaustion.

416 citations


Cited by
More filters
Journal ArticleDOI
Daniel S. Chen1, Ira Mellman1
19 Jan 2017-Nature
TL;DR: Clinical studies are beginning to define these factors as immune profiles that can predict responses to immunotherapy, suggesting that a broader view of cancer immunity is required.
Abstract: Immunotherapy is proving to be an effective therapeutic approach in a variety of cancers. But despite the clinical success of antibodies against the immune regulators CTLA4 and PD-L1/PD-1, only a subset of people exhibit durable responses, suggesting that a broader view of cancer immunity is required. Immunity is influenced by a complex set of tumour, host and environmental factors that govern the strength and timing of the anticancer response. Clinical studies are beginning to define these factors as immune profiles that can predict responses to immunotherapy. In the context of the cancer-immunity cycle, such factors combine to represent the inherent immunological status - or 'cancer-immune set point' - of an individual.

3,145 citations

Journal ArticleDOI
TL;DR: By parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient’s tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.
Abstract: The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient's tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.

2,920 citations

Journal ArticleDOI
TL;DR: Recent advances that provide a clearer molecular understanding of T cell exhaustion are reviewed and reveal new therapeutic targets for persisting infections and cancer.
Abstract: In chronic infections and cancer, T cells are exposed to persistent antigen and/or inflammatory signals. This scenario is often associated with the deterioration of T cell function: a state called 'exhaustion'. Exhausted T cells lose robust effector functions, express multiple inhibitory receptors and are defined by an altered transcriptional programme. T cell exhaustion is often associated with inefficient control of persisting infections and tumours, but revitalization of exhausted T cells can reinvigorate immunity. Here, we review recent advances that provide a clearer molecular understanding of T cell exhaustion and reveal new therapeutic targets for persisting infections and cancer.

2,825 citations

Journal ArticleDOI
TL;DR: It is surmised that TAMs can provide tools to tailor the use of cytoreductive therapies and immunotherapy in a personalized medicine approach, and that TAM-focused therapeutic strategies have the potential to complement and synergize with both chemotherapy and immunotherapies.
Abstract: Macrophages are crucial drivers of tumour-promoting inflammation. Tumour-associated macrophages (TAMs) contribute to tumour progression at different levels: by promoting genetic instability, nurturing cancer stem cells, supporting metastasis, and taming protective adaptive immunity. TAMs can exert a dual, yin-yang influence on the effectiveness of cytoreductive therapies (chemotherapy and radiotherapy), either antagonizing the antitumour activity of these treatments by orchestrating a tumour-promoting, tissue-repair response or, instead, enhancing the overall antineoplastic effect. TAMs express molecular triggers of checkpoint proteins that regulate T-cell activation, and are targets of certain checkpoint-blockade immunotherapies. Other macrophage-centred approaches to anticancer therapy are under investigation, and include: inhibition of macrophage recruitment to, and/or survival in, tumours; functional re-education of TAMs to an antitumour, 'M1-like' mode; and tumour-targeting monoclonal antibodies that elicit macrophage-mediated extracellular killing, or phagocytosis and intracellular destruction of cancer cells. The evidence supporting these strategies is reviewed herein. We surmise that TAMs can provide tools to tailor the use of cytoreductive therapies and immunotherapy in a personalized medicine approach, and that TAM-focused therapeutic strategies have the potential to complement and synergize with both chemotherapy and immunotherapy.

2,338 citations

Journal ArticleDOI
TL;DR: An algorithm-selected gene signature focused on tumor immune evasion and suppression predicts response to immune checkpoint blockade in melanoma, exceeding the accuracy of current clinical biomarkers.
Abstract: Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as SERPINB9, demonstrating utility for immunotherapy research.

2,185 citations