scispace - formally typeset
Search or ask a question
Author

Panagiotis Grammatikopoulos

Bio: Panagiotis Grammatikopoulos is an academic researcher from Okinawa Institute of Science and Technology. The author has contributed to research in topics: Nanoparticle & Coalescence (physics). The author has an hindex of 20, co-authored 49 publications receiving 1110 citations. Previous affiliations of Panagiotis Grammatikopoulos include Aristotle University of Thessaloniki & ETH Zurich.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigate the interaction of edge dislocations with interstitial dislocation loops in α-iron at 300 K and show that dislocation reactions are wide-ranging and complex, but can be described in terms of conventional dislocations reactions in which Burgers vector is conserved.

109 citations

Journal ArticleDOI
15 Mar 2016-ACS Nano
TL;DR: A comprehensive deposition rate-temperature diagram of Fe NP shapes is constructed and an analytical model that predicts the temporal evolution of these properties is developed that proposes a roadmap for experimentalists to engineer NPs of desired shapes for targeted applications.
Abstract: In this work, we study the formation mechanisms of iron nanoparticles (Fe NPs) grown by magnetron sputtering inert gas condensation and emphasize the decisive kinetics effects that give rise specifically to cubic morphologies. Our experimental results, as well as computer simulations carried out by two different methods, indicate that the cubic shape of Fe NPs is explained by basic differences in the kinetic growth modes of {100} and {110} surfaces rather than surface formation energetics. Both our experimental and theoretical investigations show that the final shape is defined by the combination of the condensation temperature and the rate of atomic deposition onto the growing nanocluster. We, thus, construct a comprehensive deposition rate-temperature diagram of Fe NP shapes and develop an analytical model that predicts the temporal evolution of these properties. Combining the shape diagram and the analytical model, morphological control of Fe NPs during formation is feasible; as such, our method proposes a roadmap for experimentalists to engineer NPs of desired shapes for targeted applications.

98 citations

Journal ArticleDOI
16 Mar 2016
TL;DR: In this article, a review of recent achievements in gas-phase nanoparticles is presented, focusing on the magnetron-sputter gas phase condensation, which allows for flexible growth of complex, sophisticated NPs.
Abstract: Gas-phase synthesis characterizes a class of bottom-up methods for producing multifunctional nanoparticles (NPs) from individual atoms or molecules. This review aims to summarize recent achievements using this approach, and compare its potential to other physical or chemical NP fabrication techniques. More specifically, emphasis is given to magnetron-sputter gas-phase condensation, since it allows for flexible growth of complex, sophisticated NPs, owing to the fast kinetics and non-equilibrium processes it entails. Nanoparticle synthesis is decomposed into four stages, i.e. aggregation, shell-coating, mass-filtration, and deposition. We present the formation of NPs of various functionalities for different applications, such as magnetic, plasmonic, catalytic and, gas-sensing, emphasizing on the primary dependence of each type on a different stage of the fabrication process, and their resultant physical and chemical properties.

96 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis and growth modeling of silicon-silver (Si-Ag) hybrid nanoparticles using gas-aggregated cosputtering from elemental Si and Ag source targets is presented.
Abstract: Heterogeneous gas-phase condensation is a promising method of producing hybrid multifunctional nanoparticles with tailored composition and microstructure but also intrinsically introduces greater complexity to the nucleation process and growth kinetics. Herein, we report on the synthesis and growth modeling of silicon–silver (Si–Ag) hybrid nanoparticles using gas-aggregated cosputtering from elemental Si and Ag source targets. The final Si–Ag ensemble size was manipulated in the range 5–15 nm by appropriate tuning of the deposition parameters, while variations in the Si–Ag sputtering power ratio, from 1.8 to 2.25, allowed distinctive Janus and core–satellite structures, respectively, to be produced. Molecular dynamics simulations indicate that the individual species first form independent clusters of Si and Ag without significant intermixing. Collisions between unlike species are unstable in the early stages of growth (<100 ns), with large temperature differences resulting in rapid energy exchange and sep...

84 citations

Journal ArticleDOI
TL;DR: Intriguingly, at a later stage, atomic rearrangements triggered a crystallisation wave propagating through the amorphous nanoparticles, leading to mono- or polycrystalline fcc structures, and the formation of twins and surface protrusions were observed.
Abstract: Palladium nanoparticles offer an attractive alternative to bulk palladium for catalysis, hydrogen storage and gas sensing applications. Their performance depends strongly on surface structure; therefore, nanoparticle coalescence can play an important role, as it determines the resultant structure of the active sites where reactions (e.g. catalysis) actually take place, i.e. facets, edges, vertices or protrusions. With this in mind, we performed classical molecular dynamics (MD) simulations and magnetron-sputtering inert gas condensation depositions of palladium nanoparticles, supported by high-resolution transmission electron microscopy (HRTEM), to study the mechanisms that govern their coalescence. Surface energy minimisation drove the interactions initially, leading to the formation of an interface/neck, as expected. Intriguingly, at a later stage, atomic rearrangements triggered a crystallisation wave propagating through the amorphous nanoparticles, leading to mono- or polycrystalline fcc structures. In the case of crystalline nanoparticles, almost-epitaxial alignment occurred and the formation of twins and surface protrusions were observed.

77 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal Article
TL;DR: In this paper, the authors presented a method to detect the presence of a tumor in the human brain using EPFL-206025 data set, which was created on 2015-03-03, modified on 2017-05-12
Abstract: Note: Times Cited: 875 Reference EPFL-ARTICLE-206025doi:10.1021/cr0501846View record in Web of Science URL: ://WOS:000249839900009 Record created on 2015-03-03, modified on 2017-05-12

1,704 citations

01 Mar 2011
Abstract: We determined the size-dependent specific and mass activities of the oxygen reduction in HClO(4) solutions on the Pt particles in the range of 1-5 nm. The maximal mass activity at 2.2 nm is well explained based on density functional theory calculations performed on fully relaxed nanoparticles. The presence of the edge sites is the main reason for the low specific activity in nanoparticles due to very strong oxygen binding energies at these sites. Our results clearly demonstrate that the catalytic activity highly depends on the shape and size of the nanoparticles.

557 citations

Journal ArticleDOI
TL;DR: A comprehensive overview on various physical, chemical and bio-assisted methods largely employed to synthesize and fabricate NPs of varying size, surface characteristics, functionalities and physicochemical behavior is provided in this paper.
Abstract: Ongoing advances in nanotechnology research have established a variety of methods to synthesize nanoparticles (NPs) from a diverse range of materials, including metals, semiconductors, ceramics, metal oxides, polymers, etc. Depending upon their origin and synthesis methods, NPs possess unique physicochemical, structural and morphological characteristics, which are important in a wide variety of applications concomitant to electronic, optoelectronic, optical, electrochemical, environment and biomedical fields. This review provides a comprehensive overview on various physical, chemical and bio-assisted methods largely employed to synthesize and fabricate NPs of varying size, surface characteristics, functionalities and physicochemical behavior. The key applications of nanoparticles have also been discussed.

463 citations