scispace - formally typeset
Search or ask a question
Author

Pang-Chen Sun

Bio: Pang-Chen Sun is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Ultrashort pulse & Femtosecond pulse shaping. The author has an hindex of 22, co-authored 62 publications receiving 2027 citations. Previous affiliations of Pang-Chen Sun include University of California, Los Angeles & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that although the reflection characteristics can be accurately modeled with the second-order EMT, the phase difference created by form birefringence for TE- and TM-polarized waves requires the use of a more rigorous, RCWA approach.
Abstract: Diffraction characteristics of high-spatial-frequency (HSF) gratings are evaluated for application to polarization-selective computer-generated holograms by the use of two different approaches: second-order effective-medium theory (EMT) and rigorous coupled-wave analysis (RCWA). The reflectivities and the phase differences for TE- and TM-polarized waves are investigated in terms of various input parameters, and results obtained with second-order EMT and RCWA are compared. It is shown that although the reflection characteristics can be accurately modeled with the second-order EMT, the phase difference created by form birefringence for TE- and TM-polarized waves requires the use of a more rigorous, RCWA approach. The design of HSF gratings in terms of their form birefringence and reflectivity properties is discussed in conjunction with polarization-selective computer-generated holograms. A specific design optimization example furnishes a grating profile that provides a trade-off between the largest form birefringence and the lowest reflectivities.

198 citations

Journal ArticleDOI
TL;DR: In this article, an optical element that is transparent for TM polarization and reflective for TE polarization at an arbitrary incidence angle and operational wavelength was designed, and the experiments with the fabricated element demonstrate a high efficiency (97), with polarization extinction ratios higher than 220:1 at a wavelength of 1.523 m over a 20 angular bandwidth by means of the ASR characteristics of the device.
Abstract: Polarizing beam splitters that use the anisotropic spectral reflectivity (ASR) characteristic of high-spatial-frequency multilayer binary gratings have been designed, fabricated, and characterized. Using the ASR effect with rigorous coupled-wave analysis, we design an optical element that is transparent for TM polarization and reflective for TE polarization at an arbitrary incidence angle and operational wavelength. The experiments with the fabricated element demonstrate a high efficiency (97), with polarization extinction ratios higher than 220:1 at a wavelength of 1.523 m over a 20 angular bandwidth by means of the ASR characteristics of the device. These ASR devices combine many useful characteristics, such as compactness, low insertion loss, high efficiency, and broad angular and spectral bandwidth operations.

191 citations

Journal ArticleDOI
TL;DR: An adaptive experimental system to compensate for the wave-front aberrations of a model eye has been built in which the developed adaptive mirror-control algorithm is used to control a deformable mirror with 19 active channels.
Abstract: The nonlinear response and strong coupling of control channels in micromachined membrane deformable mirror (MMDM) devices make it difficult for one to control the MMDM to obtain the desired mirror surface shapes. A closed-loop adaptive control algorithm is developed for a continuous-surface MMDM used for aberration compensation. The algorithm iteratively adjusts the control voltages of all electrodes to reduce the variance of the optical wave front measured with a Hartmann–Shack wave-front sensor. Zernike polynomials are used to represent the mirror surface shape as well as the optical wave front. An adaptive experimental system to compensate for the wave-front aberrations of a model eye has been built in which the developed adaptive mirror-control algorithm is used to control a deformable mirror with 19 active channels. The experimental results show that the algorithm can adaptively update control voltages to generate an optimum continuous mirror surface profile, compensating for the aberrations within the operating range of the deformable mirror.

158 citations

Journal ArticleDOI
TL;DR: A novel approach to implementing wide-field-of-view narrow-band spectral filters, using an array of resonant nanocavities consisting of periodic defects in a two-dimensional three-material photonic-crystal nanostructure that diminishes the angular sensitivity of the resonance condition relative to that of a standard multilayer filter.
Abstract: We describe a novel approach to implementing wide-field-of-view narrow-band spectral filters, using an array of resonant nanocavities consisting of periodic defects in a two-dimensional three-material photonic-crystal nanostructure. We analyze the transmissivity of this type of filter for a range of wavelengths and in-plane incidence angles as a function of the defect's refractive index, the number of layers in the photonic-crystal reflectors, and the period of the defects and find that this structure diminishes the angular sensitivity of the resonance condition relative to that of a standard multilayer filter.

112 citations

Journal ArticleDOI
TL;DR: In this paper, a nonlinear optical processor that is capable of real-time conversion of a femtosecond pulse sequence into its spatial image is introduced, analyzed, and experimentally characterized.
Abstract: A nonlinear optical processor that is capable of real-time conversion of a femtosecond pulse sequence into its spatial image is introduced, analyzed, and experimentally characterized. The method employs nonlinear spectral domain three-wave mixing in a crystal of LiB3O5, where spectral decomposition waves of a shaped femtosecond pulse are mixed with those of a transform-limited pulse to generate a quasi-monochromatic second-harmonic field. By means of this nonlinear process, the temporal-frequency content of the shaped pulse is directly encoded onto the spatial-frequency content of the second-harmonic field, producing a spatial image of the temporal shaped pulse. We show that, unlike the commonly used autocorrelator, such time-to-space conversion carries both amplitude and phase information on the shape of the femtosecond pulses.

110 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The author revealed that quantum teleportation as “Quantum one-time-pad” had changed from a “classical teleportation” to an “optical amplification, privacy amplification and quantum secret growing” situation.
Abstract: Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.

6,949 citations

Journal ArticleDOI
TL;DR: In this article, the field of femtosecond pulse shaping is reviewed, and applications of pulse shaping to optical communications, biomedical optical imaging, high power laser amplifiers, quantum control, and laser-electron beam interactions are reviewed.
Abstract: We review the field of femtosecond pulse shaping, in which Fourier synthesis methods are used to generate nearly arbitrarily shaped ultrafast optical wave forms according to user specification. An emphasis is placed on programmable pulse shaping methods based on the use of spatial light modulators. After outlining the fundamental principles of pulse shaping, we then present a detailed discussion of pulse shaping using several different types of spatial light modulators. Finally, new research directions in pulse shaping, and applications of pulse shaping to optical communications, biomedical optical imaging, high power laser amplifiers, quantum control, and laser-electron beam interactions are reviewed.

2,051 citations

Journal ArticleDOI
26 Jul 2006-Nature
TL;DR: D devices in which optics and fluidics are used synergistically to synthesize novel functionalities are described, according to three broad categories of interactions: fluid–solid interfaces, purely fluidic interfaces and colloidal suspensions.
Abstract: We describe devices in which optics and fluidics are used synergistically to synthesize novel functionalities. Fluidic replacement or modification leads to reconfigurable optical systems, whereas the implementation of optics through the microfluidic toolkit gives highly compact and integrated devices. We categorize optofluidics according to three broad categories of interactions: fluid–solid interfaces, purely fluidic interfaces and colloidal suspensions. We describe examples of optofluidic devices in each category.

1,700 citations

Journal ArticleDOI
TL;DR: A review of the progress in photonic quantum information processing can be found in this article, where the emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication, and quantum computation with linear optics.
Abstract: Multiphoton interference reveals strictly nonclassical phenomena. Its applications range from fundamental tests of quantum mechanics to photonic quantum information processing, where a significant fraction of key experiments achieved so far comes from multiphoton state manipulation. The progress, both theoretical and experimental, of this rapidly advancing research is reviewed. The emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication (e.g., quantum teleportation, entanglement purification, and quantum repeater), and quantum computation with linear optics. The scope of the review is limited to ``few-photon'' phenomena involving measurements of discrete observables.

1,156 citations

Journal ArticleDOI
TL;DR: Self-organized dendritic crystal growth is explored to assemble uniform semiconductor nanowires into highly ordered one-dimensional microscale arrays that resemble comb structures.
Abstract: Self-organized dendritic crystal growth is explored to assemble uniform semiconductor nanowires into highly ordered one-dimensional microscale arrays that resemble comb structures. The individual ZnO nanowires have uniform diameters ranging from 10 to 300 nm. They are evenly spaced on a stem with a regular periodicity of 0.1-2 micrometer. Under optical excitation, each individual ZnO nanowire serves as a Fabry-Perot optical cavity, and together they form a highly ordered nanowire ultraviolet laser array.

589 citations