scispace - formally typeset
Search or ask a question
Author

Pankaj K. Singh

Bio: Pankaj K. Singh is an academic researcher from Eppley Institute for Research in Cancer and Allied Diseases. The author has contributed to research in topics: Medicine & Pancreatic cancer. The author has an hindex of 35, co-authored 98 publications receiving 4519 citations. Previous affiliations of Pankaj K. Singh include University of Nebraska Medical Center & Salk Institute for Biological Studies.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is provided that expression of SHH influences tumor growth by contributing to the formation of desmoplasia in pancreatic cancer and it is shown that SHH affects the differentiation and motility of human pancreatic stellate cells and fibroblasts.
Abstract: Purpose: We investigated the contribution of Sonic hedgehog (SHH) to pancreatic cancer progression. Experimental Design: We expressed SHH in a transformed primary ductal-derived epithelial cell line from the human pancreas, transformed hTert-HPNE (T-HPNE), and evaluated the effects on tumor growth. We also directly inhibited the activity of SHH in vivo by administering a blocking antibody to mice challenged orthotopically with the Capan-2 pancreatic cancer cell line, which is known to express SHH and form moderately differentiated tumors in nude mice. Results: Our data provide evidence that expression of SHH influences tumor growth by contributing to the formation of desmoplasia in pancreatic cancer. We further show that SHH affects the differentiation and motility of human pancreatic stellate cells and fibroblasts. Conclusions: These data suggest that SHH contributes to the formation of desmoplasia in pancreatic cancer, an important component of the tumor microenvironment.

481 citations

Journal ArticleDOI
TL;DR: It is concluded that combinations of pharmacologic inhibitors that concurrently block both ERK MAPK and autophagic processes that are upregulated in response to ERK inhibition may be effective treatments for PDAC.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is characterized by KRAS- and autophagy-dependent tumorigenic growth, but the role of KRAS in supporting autophagy has not been established. We show that, to our surprise, suppression of KRAS increased autophagic flux, as did pharmacological inhibition of its effector ERK MAPK. Furthermore, we demonstrate that either KRAS suppression or ERK inhibition decreased both glycolytic and mitochondrial functions. We speculated that ERK inhibition might thus enhance PDAC dependence on autophagy, in part by impairing other KRAS- or ERK-driven metabolic processes. Accordingly, we found that the autophagy inhibitor chloroquine and genetic or pharmacologic inhibition of specific autophagy regulators synergistically enhanced the ability of ERK inhibitors to mediate antitumor activity in KRAS-driven PDAC. We conclude that combinations of pharmacologic inhibitors that concurrently block both ERK MAPK and autophagic processes that are upregulated in response to ERK inhibition may be effective treatments for PDAC. Blockade of ERK signaling in KRAS-mutant pancreatic cancer increases the dependence on autophagic flux through different mechanisms and provides a rationale for combinatorial targeting with autophagy inhibitors.

419 citations

Journal ArticleDOI
TL;DR: The cytoplasmic tail of MUC1 (MUC1CT), the best characterized of the transmembrane mucins, is involved in several signaling pathways, including those involving Ras, beta-catenin, p120 caten in, p53 and estrogen receptor alpha.

385 citations

Journal ArticleDOI
TL;DR: A widely prevalent mechanism of resistance to gemcitabine in pancreatic cancer is established, whereby increased glycolytic flux leads to glucose addiction in cancer cells and a corresponding increase in pyrimidine biosynthesis to enhance the intrinsic levels of deoxycytidine triphosphate (dCTP).

331 citations

Journal ArticleDOI
TL;DR: This review will highlight the significance of three critical pathways in developmental biology and the emerging understanding of their roles in regulating tumor metastasis: Bone morphogenic protein, Notch and Sonic hedgehog.
Abstract: This review will highlight the significance of three critical pathways in developmental biology and our emerging understanding of their roles in regulating tumor metastasis: Bone morphogenic protein (BMP), Notch and Sonic hedgehog (SHH). We will discuss parallels between their known roles in development and how these processes can be used by tumor cells to create microenvironments that enhance tumor metastasis. That tumor cells usurp pathways critical to the developing embryo is not surprising, as many of the normal developmental programs include processes that are also seen during tumor progression to a metastatic phenotype, including epithelial to mesenchymal transition (EMT), tissue specific morphogenesis, cellular motility and invasion. BMPs are involved in EMT, contribute to tissue specific morphogenesis, and are expressed in highly-metastatic tumor cells. BMPs have also been hypothesized to have a role in the establishment of a pre-neoplastic niche. Notch and SHH facilitate neovascularization, angiogenesis, EMT and can contribute to the maintenance of highly-metastatic tumor stem cells.

214 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: Owing to the importance of these tumour-associated phenotypes in metastasis and cancer-related mortality, targeting the products of such cellular plasticity is an attractive but challenging approach that is likely to lead to improved clinical management of cancer patients.
Abstract: Transitions between epithelial and mesenchymal states have crucial roles in embryonic development. Emerging data suggest a role for these processes in regulating cellular plasticity in normal adult tissues and in tumours, where they can generate multiple, distinct cellular subpopulations contributing to intratumoural heterogeneity. Some of these subpopulations may exhibit more differentiated features, whereas others have characteristics of stem cells. Owing to the importance of these tumour-associated phenotypes in metastasis and cancer-related mortality, targeting the products of such cellular plasticity is an attractive but challenging approach that is likely to lead to improved clinical management of cancer patients.

3,101 citations

Journal ArticleDOI
12 Jun 2009-Science
TL;DR: Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, it is found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human PDA.
Abstract: Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human PDA. We tested whether the delivery and efficacy of gemcitabine in the mice could be improved by coadministration of IPI-926, a drug that depletes tumor-associated stromal tissue by inhibition of the Hedgehog cellular signaling pathway. The combination therapy produced a transient increase in intratumoral vascular density and intratumoral concentration of gemcitabine, leading to transient stabilization of disease. Thus, inefficient drug delivery may be an important contributor to chemoresistance in pancreatic cancer.

2,831 citations