scispace - formally typeset
Search or ask a question
Author

Pankaj Sahlot

Bio: Pankaj Sahlot is an academic researcher from Pandit Deendayal Petroleum University. The author has contributed to research in topics: Friction stir welding & Materials science. The author has an hindex of 7, co-authored 15 publications receiving 123 citations. Previous affiliations of Pankaj Sahlot include Indian Institute of Technology Gandhinagar.

Papers
More filters
Journal ArticleDOI
15 May 2017-Wear
TL;DR: In this paper, the authors present quantitative wear analysis of H13 steel tool during FSW of CuCrZr alloy, and show that higher amount of total tool wear is observed for faster tool rotational speeds, and slower traverse speeds.

51 citations

Journal ArticleDOI
TL;DR: In this paper, an assisted heating tool design was used to obtain better weld surface finish, and lower chip formation and material loss during friction stir welding (FSW) of thermoplastics.

42 citations

Journal ArticleDOI
TL;DR: In this article, a heat transfer numerical model is developed for friction stir welding of dissimilar materials Al 6061 and AZ31 alloy, which can be used to predict the thermal cycle, peak temperature, and thermo-mechanically affected zone.
Abstract: A heat transfer numerical model is developed for friction stir welding of dissimilar materials Al 6061 and AZ31 alloy. Thermo-physical properties were experimentally determined for the stir zone and compared with the base alloys. Experimentally determined thermo-physical properties of the stir zone are not strictly the average values of the base alloys but exhibit a complex relationship with the microstructural features and the intermixing of Al and Mg in the weld region. The numerical model is employed to predict the temperature distribution on the advancing and retreating side. A good agreement between computed and experimentally measured results was obtained at 24-mm, 20-mm, and 16-mm tool shoulder diameter. The proposed model can be used to predict the thermal cycle, peak temperature, and thermo-mechanically affected zone for welding of dissimilar materials on friction stir welding.

24 citations

Journal ArticleDOI
TL;DR: In this article, a quantitative wear study of H13 steel tool pin profile for friction stir welding of high melting point metallic (HMPM) materials has been performed for H13 alloy and the results indicate that measured wear depth is small near the pin root and significantly increases towards the tip.
Abstract: Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.

22 citations

Journal ArticleDOI
TL;DR: In this article, the effect of various input parameters, i.e., laser power, scanning speed, hatch spacing, and layer thickness, on various mechanical properties of additive manufacturing (AM) SS316L, such as tensile strength, hardness, and effect of porosity, along with the microstructure evolution is also discussed.
Abstract: Additive manufacturing (AM) is one of the recently studied research areas, due to its ability to eliminate different subtractive manufacturing limitations, such as difficultly in fabricating complex parts, material wastage, and numbers of sequential operations. Laser-powder bed fusion (L-PBF) AM for SS316L is known for complex part production due to layer-by-layer deposition and is extensively used in the aerospace, automobile, and medical sectors. The process parameter selection is crucial for deciding the overall quality of the SS316L build component with L-PBF AM. This review critically elaborates the effect of various input parameters, i.e., laser power, scanning speed, hatch spacing, and layer thickness, on various mechanical properties of AM SS316L, such as tensile strength, hardness, and the effect of porosity, along with the microstructure evolution. The effect of other AM parameters, such as the build orientation, pre-heating temperature, and particle size, on the build properties is also discussed. The scope of this review also concerns the challenges in practical applications of AM SS316L. Hence, the residual stress formation, their influence on the mechanical properties and corrosion behavior of the AM build part for bio implant application is also considered. This review involves a detailed comparison of properties achievable with different AM techniques and various post-processing techniques, such as heat treatment and grain refinement effects on properties. This review would help in selecting suitable process parameters for various human body implants and many different applications. This study would also help to better understand the effect of each process parameter of PBF-AM on the SS316L build part quality.

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the control strategies for back support, weld thinning, and keyhole defects in friction stir welding (FSW) is presented, which are basically divided into self-supported FSW, non-weld-thinning FSW and friction stir-based remanufacturing.

350 citations

Journal ArticleDOI
14 Oct 2020-Friction
TL;DR: This review takes stock of the recent advances in research pertaining to different aspects of tribology within the last 2 to 3 years and presents future outlook pertaining to these aspects.
Abstract: The reach of tribology has expanded in diverse fields and tribology related research activities have seen immense growth during the last decade. This review takes stock of the recent advances in research pertaining to different aspects of tribology within the last 2 to 3 years. Different aspects of tribology that have been reviewed including lubrication, wear and surface engineering, biotribology, high temperature tribology, and computational tribology. This review attempts to highlight recent research and also presents future outlook pertaining to these aspects. It may however be noted that there are limitations of this review. One of the most important of these is that tribology being a highly multidisciplinary field, the research results are widely spread across various disciplines and there can be omissions because of this. Secondly, the topics dealt with in the field of tribology include only some of the salient topics (such as lubrication, wear, surface engineering, biotribology, high temperature tribology, and computational tribology) but there are many more aspects of tribology that have not been covered in this review. Despite these limitations it is hoped that such a review will bring the most recent salient research in focus and will be beneficial for the growing community of tribology researchers.

271 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize the recent progress in FSW of aluminium-magnesium alloys and recommend the upcoming guidance concerning to fabrication of aluminum-mag magnesium alloys through FSW.
Abstract: At present aluminium-magnesium alloys are widely used in various engineering applications due to its light weight and superior properties. Joining is considered as one of the most complex phenomenon in various precision industries like aerospace, railway, automotive and marine structures because inflexible tolerances are required during different product assembly. The friction stir welding (FSW) of aluminium-magnesium of various grade has incited substantial scientific and industrial importance since it has a potency to transform the product with a good quality joint. The fabrication of such alloys is a challenging task through conventional fusion welding due to its various metallurgical concerns. Therefore, the present work is intended to summarize the recent progress in FSW of aluminium-magnesium alloys. Particular attention has been paid to microstructural evolution, phase transformation, recrystallization mechanism, material flow behaviour and how the process parameters influence the various mechanical properties and associated defects during FSW. Various experimental and numerical simulation results have been mentioned for weld property comparison. Finally, this work not only points out the prominent conclusions of the preceding research but also recommends the upcoming guidance concerning to fabrication of aluminium-magnesium alloys through FSW.

120 citations

Journal ArticleDOI
TL;DR: In this paper, the requirements of FSW and its process capability has been highlighted for joining of similar/dissimilar polymeric materials for future prospective, where the FSW is one of the most acceptable welding techniques for production of structural/industrial components.
Abstract: Polymer composites have certain advantages over metals in terms of mechanical as well as metallurgical properties. These can be joined with similar as well as dissimilar polymer composites (subject to certain conditions like glass transition temperature, rheological properties etc.). In last 20-25 years number of techniques and concepts has been developed to offer the possibility of joining of polymeric materials which have similar or dissimilar characteristics. In present scenario mechanical fastening and adhesive bonding is replaced by applying welding concepts like: laser transmission welding, friction stir welding (FSW), ultrasonic welding, hot fusion resistance welding etc. The FSW is one of the most acceptable welding techniques for production of structural/industrial components. In this present work, requirements of FSW and its process capability has been highlighted for joining of similar/dissimilar polymeric materials for future prospective.

105 citations

Journal ArticleDOI
21 Oct 2017
TL;DR: In this paper, a comparison between different numerical approaches for thermal analysis of friction stir welding at both local and global scales is reviewed and the applications of each method in the FSW process is discussed in detail.
Abstract: Friction Stir Welding (FSW) is a novel kind of welding for joining metals that are impossible or difficult to weld by conventional methods. Three-dimensional nature of FSW makes the experimental investigation more complex. Moreover, experimental observations are often costly and time consuming, and usually there is an inaccuracy in measuring the data during experimental tests. Thus, Finite Element Methods (FEMs) has been employed to overcome the complexity, to increase the accuracy and also to reduce costs. It should be noted that, due to the presence of large deformations of the material during FSW, strong distortions of mesh might be happened in the numerical simulation. Therefore, one of the most significant considerations during the process simulation is the selection of the best numerical approach. It must be mentioned that; the numerical approach selection determines the relationship between the finite grid (mesh) and deforming continuum of computing zones. Also, numerical approach determines the ability of the model to overcome large distortions of mesh and provides an accurate resolution of boundaries and interfaces. There are different descriptions for the algorithms of continuum mechanics include Lagrangian and Eulerian. Moreover, by combining the above-mentioned methods, an Arbitrary Lagrangian–Eulerian (ALE) approach is proposed. In this paper, a comparison between different numerical approaches for thermal analysis of FSW at both local and global scales is reviewed and the applications of each method in the FSW process is discussed in detail. Observations showed that, Lagrangian method is usually used for modelling thermal behavior in the whole structure area, while Eulerian approach is seldom employed for modelling of the thermal behavior, and it is usually employed for modelling the material flow. Additionally, for modelling of the heat affected zone, ALE approach is found to be as an appropriate approach. Finally, several significant challenges and subjects remain to be addressed about FSW thermal analysis and opportunities for the future work are proposed.

71 citations