scispace - formally typeset
Search or ask a question
Author

Paola Arias

Bio: Paola Arias is an academic researcher from University of Santiago, Chile. The author has contributed to research in topics: Dark matter & Axion. The author has an hindex of 10, co-authored 47 publications receiving 912 citations. Previous affiliations of Paola Arias include Pontifical Catholic University of Chile & Polish Academy of Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: Very weakly interacting slim particles (WISPs) such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today as mentioned in this paper.
Abstract: Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We nd that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches { exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques { can probe large parts of this parameter space in the foreseeable future.

757 citations

Journal ArticleDOI
TL;DR: Very weakly interacting slim particles (WISPs) such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today.
Abstract: Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches -- exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques -- can probe large parts of this parameter space in the foreseeable future.

94 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed to use multiple magnets to increase the length of the interaction region to improve the sensitivity for axions towards smaller couplings, but the price to pay is that the mass range is limited to smaller masses.
Abstract: One of the prime tools to search for new light bosons interacting very weakly with photons – prominent examples are axions, axion-like particles and extra “hidden” U(1) gauge bosons – are light-shining-through-a-wall (LSW) experiments. With the current generation of these experiments finishing data taking it is time to plan for the next and search for an optimal setup. The main challenges are clear: on the one hand we want to improve the sensitivity towards smaller couplings, on the other hand we also want to increase the mass range to which the experiments are sensitive. Our main example are axion(-like particle)s but we also discuss implications for other WISPs (weakly interacting slim particles) such as hidden U(1) gauge bosons. To improve the sensitivity for axions towards smaller couplings one can use multiple magnets to increase the length of the interaction region. However, naively the price to pay is that the mass range is limited to smaller masses. We discuss how one can optimize the arrangement of magnets (both in field direction as well as allowing for possible gaps in between) to ameliorate this problem. Moreover, future experiments will include resonant, high quality optical cavities in both the production and the regeneration region. To achieve the necessary high quality of the cavities we need to avoid too high diffraction losses. This leads to minimum requirements on the diameter of the laser beam and therefore on the aperture of the cavity. We investigate what can be achieved with currently available magnets and desirable features for future ones.

58 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the dark matter production in scenarios with a non-standard expansion history and reconstructed the possible nonstandard cosmologies that could make the WIMP mechanism viable.
Abstract: Once dark matter has been discovered and its particle physics properties have been determined, a crucial question rises concerning how it was produced in the early Universe. If its thermally averaged annihilation cross section is in the ballpark of few× 10−26 cm3/s, the WIMP mechanism in the standard cosmological scenario (i.e. radiation dominated Universe) will be highly favored. If this is not the case one can either consider an alternative production mechanism, or a non-standard cosmology. Here we study the dark matter production in scenarios with a non-standard expansion history. Additionally, we reconstruct the possible non-standard cosmologies that could make the WIMP mechanism viable.

53 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that a cold dark matter condensate made of gauge bosons from an extra hidden U(1) sector can create a small, oscillating electric density current, which can also be searched for in the recently proposed LC-circuit setup conceived for axion cold- dark matter search by Sikivie, Sullivan and Tanner.
Abstract: We point out that a cold dark matter condensate made of gauge bosons from an extra hidden U(1) sector—dubbed hidden photons—can create a small, oscillating electric density current. Thus, they could also be searched for in the recently proposed LC-circuit setup conceived for axion cold dark matter search by Sikivie, Sullivan and Tanner. We estimate the sensitivity of this setup for hidden-photon cold dark matter and we find it could cover a sizable, so far unexplored parameter space.

26 citations


Cited by
More filters
01 Apr 2003
TL;DR: In this paper, the authors measured the flux of neutrino from distant nuclear reactors and found fewer nu;(e) events than expected from standard assumptions about nu; (e) propagation at the 99.95% C.L.yr exposure.
Abstract: KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.

1,659 citations

Journal Article
TL;DR: In this paper, the subject of quantum electrodynamics is presented in a new form, which may be dealt with in two ways: using redundant variables and using a direct physical interpretation.
Abstract: THE subject of quantum electrodynamics is extremely difficult, even for the case of a single electron. The usual method of solving the corresponding wave equation leads to divergent integrals. To avoid these, Prof. P. A. M. Dirac* uses the method of redundant variables. This does not abolish the difficulty, but presents it in a new form, which may be dealt with in two ways. The first of these needs only comparatively simple mathematics and is directly connected with an elegant general scheme, but unfortunately its wave functions apply only to a hypothetical world and so its physical interpretation is indirect. The second way has the advantage of a direct physical interpretation, but the mathematics is so complicated that it has not yet been solved even for what appears to be the simplest possible case. Both methods seem worth further study, failing the discovery of a third which would combine the advantages of both.

1,398 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the application of atomic physics to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics and test the principles of general relativity.
Abstract: Advances in atomic physics, such as cooling and trapping of atoms and molecules and developments in frequency metrology, have added orders of magnitude to the precision of atom-based clocks and sensors. Applications extend beyond atomic physics and this article reviews using these new techniques to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics, and test the principles of general relativity.

1,077 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a review of the latest developments of the theory, cosmology and astrophysics of axions and discuss the prospects to probe a large fraction of relevant parameter space in the coming decade.

704 citations

Journal ArticleDOI
TL;DR: A new class of solutions to the electroweak hierarchy problem is presented that does not require either weak-scale dynamics or anthropics to be presented.
Abstract: A new class of solutions to the electroweak hierarchy problem is presented that does not require either weak-scale dynamics or anthropics. Dynamical evolution during the early Universe drives the Higgs boson mass to a value much smaller than the cutoff. The simplest model has the particle content of the standard model plus a QCD axion and an inflation sector. The highest cutoff achieved in any technically natural model is 10^{8} GeV.

674 citations