scispace - formally typeset
Search or ask a question
Author

Paola Sperandeo

Other affiliations: University of Milano-Bicocca
Bio: Paola Sperandeo is an academic researcher from University of Milan. The author has contributed to research in topics: Bacterial outer membrane & Lipopolysaccharide transport. The author has an hindex of 19, co-authored 47 publications receiving 1542 citations. Previous affiliations of Paola Sperandeo include University of Milano-Bicocca.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that depletion of any of the proteins mentioned above leads to common phenotypes, including the presence of abnormal membrane structures in the periplasm, and the location of at least one of these five proteins in every cellular compartment suggests a model for how the LPS assembly pathway is organized and ordered in space.
Abstract: Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) in most gram-negative bacteria, and its structure and biosynthetic pathway are well known. Nevertheless, the mechanisms of transport and assembly of this molecule at the cell surface are poorly understood. The inner membrane (IM) transport protein MsbA is responsible for flipping LPS across the IM. Additional components of the LPS transport machinery downstream of MsbA have been identified, including the OM protein complex LptD/LptE (formerly Imp/RlpB), the periplasmic LptA protein, the IM-associated cytoplasmic ATP binding cassette protein LptB, and LptC (formerly YrbK), an essential IM component of the LPS transport machinery characterized in this work. Here we show that depletion of any of the proteins mentioned above leads to common phenotypes, including (i) the presence of abnormal membrane structures in the periplasm, (ii) accumulation of de novo-synthesized LPS in two membrane fractions with lower density than the OM, and (iii) accumulation of a modified LPS, which is ligated to repeating units of colanic acid in the outer leaflet of the IM. Our results suggest that LptA, LptB, LptC, LptD, and LptE operate in the LPS assembly pathway and, together with other as-yet-unidentified components, could be part of a complex devoted to the transport of LPS from the periplasmic surface of the IM to the OM. Moreover, the location of at least one of these five proteins in every cellular compartment suggests a model for how the LPS assembly pathway is organized and ordered in space.

230 citations

Journal ArticleDOI
TL;DR: Evidence is presented that two Escherichia coli essential genes, yhbN and yhBG, now renamed lptA and lptB, respectively, participate in LPS biogenesis and are implicated in the transport of LPS from the IM to the OM of E. coli.
Abstract: The outer membrane (OM) of gram-negative bacteria is an asymmetric lipid bilayer that protects the cell from toxic molecules. Lipopolysaccharide (LPS) is an essential component of the OM in most gram-negative bacteria, and its structure and biosynthesis are well known. Nevertheless, the mechanisms of transport and assembly of this molecule in the OM are poorly understood. To date, the only proteins implicated in LPS transport are MsbA, responsible for LPS flipping across the inner membrane, and the Imp/RlpB complex, involved in LPS targeting to the OM. Here, we present evidence that two Escherichia coli essential genes, yhbN and yhbG, now renamed lptA and lptB, respectively, participate in LPS biogenesis. We show that mutants depleted of LptA and/or LptB not only produce an anomalous LPS form, but also are defective in LPS transport to the OM and accumulate de novo-synthesized LPS in a novel membrane fraction of intermediate density between the inner membrane (IM) and the OM. In addition, we show that LptA is located in the periplasm and that expression of the lptA-lptB operon is controlled by the extracytoplasmic σ factor RpoE. Based on these data, we propose that LptA and LptB are implicated in the transport of LPS from the IM to the OM of E. coli.

222 citations

Journal ArticleDOI
TL;DR: This review focuses on recent studies that led to the present understanding of the protein machine implicated in LPS transport and in assembly at the cell surface.

151 citations

Journal ArticleDOI
TL;DR: The first crystal structures of processed Escherichia coli LptA in two crystal forms are presented, one with two molecules in the asymmetric unit and the other with eight, suggesting that head-to-tail stacking of LpsA molecules could be destabilized by the mutation, thereby potentially contributing to impair LPS transport.

144 citations

Journal ArticleDOI
TL;DR: It is shown that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex and further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components.
Abstract: Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components.

94 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The bacteria cell envelope is a complex multilayered structure that serves to protect these organisms from their unpredictable and often hostile environment.
Abstract: The bacteria cell envelope is a complex multilayered structure that serves to protect these organisms from their unpredictable and often hostile environment. The cell envelopes of most bacteria fall into one of two major groups. Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which itself is surrounded byan outer membrane containing lipopolysaccharide. Gram-positive bacteria lack an outer membrane but are surrounded by layers of peptidoglycan many times thicker than is found in the Gram-negatives. Threading through these layers of peptidoglycan are long anionic polymers, called teichoic acids. The composition and organization of these envelope layers and recent insights into the mechanisms of cell envelope assembly are discussed.

2,650 citations

Journal ArticleDOI
28 Aug 2014
TL;DR: In this review the factors that have been linked to the waxing of bacterial resistance are addressed and profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated.
Abstract: Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed.

1,467 citations

Journal ArticleDOI
TL;DR: The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions.
Abstract: Summary: ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.

1,194 citations

Journal ArticleDOI
TL;DR: Diverse covalent modifications of the lipid A moiety may occur during its transit from the outer surface of the inner membrane to the outer membrane of most gram-negative bacteria.
Abstract: The lipid A moiety of lipopolysaccharide forms the outer monolayer of the outer membrane of most gram-negative bacteria. Escherichia coli lipid A is synthesized on the cytoplasmic surface of the inner membrane by a conserved pathway of nine constitutive enzymes. Following attachment of the core oligosaccharide, nascent core-lipid A is flipped to the outer surface of the inner membrane by the ABC transporter MsbA, where the O-antigen polymer is attached. Diverse covalent modifications of the lipid A moiety may occur during its transit from the outer surface of the inner membrane to the outer membrane. Lipid A modification enzymes are reporters for lipopolysaccharide trafficking within the bacterial envelope. Modification systems are variable and often regulated by environmental conditions. Although not required for growth, the modification enzymes modulate virulence of some gram-negative pathogens. Heterologous expression of lipid A modification enzymes may enable the development of new vaccines.

1,148 citations

Journal ArticleDOI
TL;DR: This work reviews recent advances in the processes used for lipopolysaccharide biosynthesis and export, emphasizing the reactions that are essential for viability.
Abstract: Lipopolysaccharide molecules represent a unique family of glycolipids based on a highly conserved lipid moiety known as lipid A. These molecules are produced by most gram-negative bacteria, in which they play important roles in the integrity of the outer-membrane permeability barrier and participate extensively in host-pathogen interplay. Few bacteria contain lipopolysaccharide molecules composed only of lipid A. In most forms, lipid A is glycosylated by addition of the core oligosaccharide that, in some bacteria, provides an attachment site for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide structures is reflected in the processes used for their biosynthesis and export. Rapid growth and cell division depend on the bacterial cell's capacity to synthesize and export lipopolysaccharide efficiently and in large amounts. We review recent advances in those processes, emphasizing the reactions that are essential for viability.

526 citations