scispace - formally typeset
Search or ask a question
Author

Paolo Cerretelli

Bio: Paolo Cerretelli is an academic researcher from National Research Council. The author has contributed to research in topics: Skeletal muscle & Anaerobic exercise. The author has an hindex of 46, co-authored 155 publications receiving 8512 citations. Previous affiliations of Paolo Cerretelli include Italian National Olympic Committee & University of Geneva.


Papers
More filters
Journal ArticleDOI
TL;DR: Hypertrophy produced by strength training accounts for 40% of the increase in force while the remaining 60% seems to be attributable to an increased neural drive and possibly to changes in muscle architecture.
Abstract: Four male subjects aged 23–34 years were studied during 60 days of unilateral strength training and 40 days of detraining. Training was carried out four times a week and consisted of six series of ten maximal isokinetic knee extensions at an angular velocity of 2.09 rad·s−1. At the start and at every 20th day of training and detraining, isometric maximal voluntary contraction (MVC), integrated electromyographic activity (iEMG) and quadriceps muscle cross-sectional area (CSA) assessed at seven fractions of femur length (Lf), by nuclear magnetic resonance imaging, were measured on both trained (T) and untrained (UT) legs. Isokinetic torques at 30° before full knee extension were measured before and at the end of training at: 0, 1.05, 2.09, 3.14, 4.19, 5.24 rad·s−1. After 60 days T leg CSA had increased by 8.5%±1.4% (mean±SEM,n=4,p<0.001), iEMG by 42.4%±16.5% (p<0.01) and MVC by 20.8%±5.4% (p<0.01). Changes during detraining had a similar time course to those of training. No changes in UT leg CSA were observed while iEMG and MVC increased by 24.8%±10% (N.S.) and 8.7%±4.3% (N.S.), respectively. The increase in quadriceps muscle CSA was maximal at 2/10 Lf (12.0%±1.5%,p<0.01) and minimal, proximally to the knee, at 8/10 Lf (3.5%±1.2%, N.S.). Preferential hypertrophy of the vastus medialis and intermedius muscles compared to those of the rectus femoris and lateralis muscles was observed. Isoangular torque of T leg increased by 20.9%±5.4% (p<0.05), 23.8%±7.8% (p<0.05) and 22.5%±6.7% (p<0.05) at 0, 1.05 and 2.09 rad·s−1 respectively; no significant change was observed at higher velocities and in the UT leg. Hypertrophy produced by strength training accounts for 40% of the increase in force while the remaining 60% seems to be attributable to an increased neural drive and possibly to changes in muscle architecture.

762 citations

Journal ArticleDOI
TL;DR: In this article, indirect calorimetric measurements were made on two athletes running at different speeds up to 22 km/hr at grades from -20 to +15; the function was found to be linearly related to speed.
Abstract: Indirect calorimetric measurements were made on two athletes running at different speeds up to 22 km/hr at grades from -20 to +15%; the function was found to be linearly related to speed. Within th...

667 citations

Journal ArticleDOI
TL;DR: The remarkable shortening observed during isometric contraction suggests that, at rest, the gastrocnemius muscle and tendon are considerably slack, and the extrapolation of muscle architectural data obtained from cadaver conditions should be made only for matching muscle lengths.
Abstract: 1. Human gastrocnemius medialis architecture was analysed in vivo, by ultrasonography, as a function of joint angle at rest and during voluntary isometric contractions up to the maximum force (MCV). maximum force (MVC). 2. At rest, as ankle joint angle increased from 90 to 150 deg, pennation increased from 15.8 to 27.7 deg, fibre length decreased from 57.0 to 34.0 mm and the physiological cross-sectional area (PCSA) increased from 42.1 to 63.5 cm2. 3. From rest to MVC, at a fixed ankle joint angle of 110 deg, pennation angle increased from 15.5 to 33.6 deg and fibre length decreased from 50.8 to 32.9 mm, with no significant change in the distance between the aponeuroses. As a result of these changes the PCSA increased by 34.8%. 4. Measurements of pennation angle, fibre length and distance between the aponeuroses of the gastrocnemius medialis were also performed by ultrasound on a cadaver leg and found to be in good agreement with direct anatomical measurements. 5. It is concluded that human gastrocnemius medialis architecture is significantly affected both by changes of joint angle at rest and by isometric contraction intensity. The remarkable shortening observed during isometric contraction suggests that, at rest, the gastrocnemius muscle and tendon are considerably slack. The extrapolation of muscle architectural data obtained from cadavers to in vivo conditions should be made only for matching muscle lengths.

526 citations

Journal ArticleDOI
TL;DR: The constant muscle oxygenation during the initial phase of the on-transition indicates a tight coupling between increases in O2 delivery and O2 utilization and adequacy of O2 availability in relation to needs.
Abstract: Near-infrared spectroscopy (NIRS) was utilized to gain insights into the kinetics of oxidative metabolism during exercise transitions. Ten untrained young men were tested on a cycle ergometer durin...

423 citations

Journal ArticleDOI
TL;DR: It is concluded that oxygen availability to muscle mitochondria after prolonged high-altitude exposure in humans is improved due to an unchanged capillary network, supplying a reduced muscle oxidative capacity.
Abstract: Muscle structural changes during typical mountaineering expeditions to the Himalayas were assessed by taking muscle biopsies from 14 mountaineers before and after their sojourn at high altitude (greater than 5000 m for over 8 weeks). M. vastus lateralis samples were analyzed morphometrically from electron micrographs. A significant reduction (-10%) of muscle cross-sectional area was found on CT scans of the thigh. Morphologically this loss in muscle mass appeared as a decrease in muscle fiber size mainly due to a loss of myofibrillar proteins. A loss of muscle oxidative capacity was also evident, as indicated by a decrease in the volume of muscle mitochondria (-25%). In contrast, the capillary network was mostly spared from catabolism. It is therefore concluded that oxygen availability to muscle mitochondria after prolonged high-altitude exposure in humans is improved due to an unchanged capillary network, supplying a reduced muscle oxidative capacity.

298 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An updated version of the Compendium of Physical Activities, a coding scheme that classifies specific physical activity (PA) by rate of energy expenditure, is provided to enhance the comparability of results across studies using self-reports of PA.
Abstract: We provide an updated version of the Compendium of Physical Activities, a coding scheme that classifies specific physical activity (PA) by rate of energy expenditure. It was developed to enhance the comparability of results across studies using self-reports of PA. The Compendium coding scheme links a five-digit code that describes physical activities by major headings (e.g., occupation, transportation, etc.) and specific activities within each major heading with its intensity, defined as the ratio of work metabolic rate to a standard resting metabolic rate (MET). Energy expenditure in MET-minutes, MET-hours, kcal, or kcal per kilogram body weight can be estimated for specific activities by type or MET intensity. Additions to the Compendium were obtained from studies describing daily PA patterns of adults and studies measuring the energy cost of specific physical activities in field settings. The updated version includes two new major headings of volunteer and religious activities, extends the number of specific activities from 477 to 605, and provides updated MET intensity levels for selected activities.

7,872 citations

Journal Article
TL;DR: In this article, the optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single and multiple-joint exercises.
Abstract: In order to stimulate further adaptation toward specific training goals, progressive resistance training (RT) protocols are necessary The optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single- and multiple-joint exercises In addition, it is recommended that strength programs sequence exercises to optimize the preservation of exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher-intensity before lower-intensity exercises) For novice (untrained individuals with no RT experience or who have not trained for several years) training, it is recommended that loads correspond to a repetition range of an 8-12 repetition maximum (RM) For intermediate (individuals with approximately 6 months of consistent RT experience) to advanced (individuals with years of RT experience) training, it is recommended that individuals use a wider loading range from 1 to 12 RM in a periodized fashion with eventual emphasis on heavy loading (1-6 RM) using 3- to 5-min rest periods between sets performed at a moderate contraction velocity (1-2 s CON; 1-2 s ECC) When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number The recommendation for training frequency is 2-3 d·wk -1 for novice training, 3-4 d·wk -1 for intermediate training, and 4-5 d·wk -1 for advanced training Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity Higher volume, multiple-set programs are recommended for maximizing hypertrophy Progression in power training entails two general loading strategies: 1) strength training and 2) use of light loads (0-60% of 1 RM for lower body exercises; 30-60% of 1 RM for upper body exercises) performed at a fast contraction velocity with 3-5 min of rest between sets for multiple sets per exercise (three to five sets) It is also recommended that emphasis be placed on multiple-joint exercises especially those involving the total body For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (>15) using short rest periods (<90 s) In the interpretation of this position stand as with prior ones, recommendations should be applied in context and should be contingent upon an individual's target goals, physical capacity, and training status

3,421 citations

Journal ArticleDOI
TL;DR: Evidence for "central" fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it.
Abstract: Muscle fatigue is an exercise-induced reduction in maximal voluntary muscle force. It may arise not only because of peripheral changes at the level of the muscle, but also because the central nervous system fails to drive the motoneurons adequately. Evidence for “central” fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it. Much data suggest that voluntary activation of human motoneurons and muscle fibers is suboptimal and thus maximal voluntary force is commonly less than true maximal force. Hence, maximal voluntary strength can often be below true maximal muscle force. The technique of twitch interpolation has helped to reveal the changes in drive to motoneurons during fatigue. Voluntary activation usually diminishes during maximal voluntary isometric tasks, that is central fatigue develops, and motor unit firing rates decline. Transcranial magnetic stimulation over the motor cortex during fatiguing exercise has revealed focal cha...

3,200 citations

Journal ArticleDOI
TL;DR: In order to stimulate further adaptation toward a specific training goal(s), progression in the type of resistance training protocol used is necessary and emphasis should be placed on multiple-joint exercises, especially those involving the total body.
Abstract: In order to stimulate further adaptation toward a specific training goal(s), progression in the type of resistance training protocol used is necessary. The optimal characteristics of strength-specific programs include the use of both concentric and eccentric muscle actions and the performance of both single- and multiple-joint exercises. It is also recommended that the strength program sequence exercises to optimize the quality of the exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher intensity before lower intensity exercises). For initial resistances, it is recommended that loads corresponding to 8-12 repetition maximum (RM) be used in novice training. For intermediate to advanced training, it is recommended that individuals use a wider loading range, from 1-12 RM in a periodized fashion, with eventual emphasis on heavy loading (1-6 RM) using at least 3-min rest periods between sets performed at a moderate contraction velocity (1-2 s concentric, 1-2 s eccentric). When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number. The recommendation for training frequency is 2-3 d x wk(-1) for novice and intermediate training and 4-5 d x wk(-1) for advanced training. Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency. For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion, with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity. Higher volume, multiple-set programs are recommended for maximizing hypertrophy. Progression in power training entails two general loading strategies: 1) strength training, and 2) use of light loads (30-60% of 1 RM) performed at a fast contraction velocity with 2-3 min of rest between sets for multiple sets per exercise. It is also recommended that emphasis be placed on multiple-joint exercises, especially those involving the total body. For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (> 15) using short rest periods (< 90 s). In the interpretation of this position stand, as with prior ones, the recommendations should be viewed in context of the individual's target goals, physical capacity, and training status.

2,845 citations

Journal ArticleDOI
TL;DR: VO2max is an important variable that sets the upper limit for endurance performance (an athlete cannot operate above 100% VO2max, for extended periods).
Abstract: BASSETT, D. R., JR. and E. T. HOWLEY. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc., Vol. 32, No. 1, pp. 70 - 84, 2000. In the exercising human, maximal oxygen uptake (VO2max) is limited by the ability of the cardiorespiratory system to deliver oxygen to the exercising muscles. This is shown by three major lines of evidence: 1) when oxygen delivery is altered (by blood doping, hypoxia, or beta-blockade), VO2max changes accordingly; 2) the increase in VO2max with training results primarily from an increase in maximal cardiac output (not an increase in the a-v# O2 difference); and 3) when a small muscle mass is overperfused during exercise, it has an extremely high capacity for consuming oxygen. Thus, O2 delivery, not skeletal muscle O2 extraction, is viewed as the primary limiting factor for VO2max in exercising humans. Metabolic adaptations in skeletal muscle are, however, critical for improving submaximal endurance performance. Endurance training causes an increase in mitochondrial enzyme activities, which improves performance by enhancing fat oxidation and decreasing lactic acid accumulation at a given VO2 .VO2max is an important variable that sets the upper limit for endurance performance (an athlete cannot operate above 100% VO2max. for extended periods). Running economy and fractional utilization of VO2max also affect endurance performance. The speed at lactate threshold (LT) integrates all three of these variables and is the best physiological predictor of distance running performance.

1,953 citations