scispace - formally typeset
Search or ask a question
Author

Paolo Cipollini

Bio: Paolo Cipollini is an academic researcher from European Space Agency. The author has contributed to research in topics: Altimeter & Rossby wave. The author has an hindex of 32, co-authored 153 publications receiving 3863 citations. Previous affiliations of Paolo Cipollini include National Oceanography Centre & Earth System Research Laboratory.


Papers
More filters
Journal ArticleDOI
28 Apr 2011-Nature
TL;DR: Detailed modelling experiments—backed by palaeoceanographic and sustained modern observations—are required to establish firmly the role of the Agulhas system in a warming climate.
Abstract: The Atlantic Ocean receives warm, saline water from the Indo-Pacific Ocean through Agulhas leakage around the southern tip of Africa. Recent findings suggest that Agulhas leakage is a crucial component of the climate system and that ongoing increases in leakage under anthropogenic warming could strengthen the Atlantic overturning circulation at a time when warming and accelerated meltwater input in the North Atlantic is predicted to weaken it. Yet in comparison with processes in the North Atlantic, the overall Agulhas system is largely overlooked as a potential climate trigger or feedback mechanism. Detailed modelling experiments—backed by palaeoceanographic and sustained modern observations—are required to establish firmly the role of the Agulhas system in a warming climate.

514 citations

Journal ArticleDOI
03 Oct 2019-Sensors
TL;DR: This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer- aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS
Abstract: Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel.

214 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present various data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on "Sea Level" during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
Abstract: Sea level is one of the 50 Essential Climate Variables (ECVs) listed by the Global Climate Observing System (GCOS) in climate change monitoring In the past two decades, sea level has been routinely measured from space using satellite altimetry techniques In order to address a number of important scientific questions such as "Is sea level rise accelerating?", "Can we close the sea level budget?", "What are the causes of the regional and interannual variability?", "Can we already detect the anthropogenic forcing signature and separate it from the internal/natural climate variability?", and "What are the coastal impacts of sea level rise?", the accuracy of altimetry-based sea level records at global and regional scales needs to be significantly improved For example, the global mean and regional sea level trend uncertainty should become better than 03 and 05 mm year−1, respectively (currently 06 and 1–2 mm year−1) Similarly, interannual global mean sea level variations (currently uncertain to 2–3 mm) need to be monitored with better accuracy In this paper, we present various data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on "Sea Level" during its first phase (2010–2013), using multi-mission satellite altimetry data over the 1993–2010 time span In a first step, using a new processing system with dedicated algorithms and adapted data processing strategies, an improved set of sea level products has been produced The main improvements include: reduction of orbit errors and wet/dry atmospheric correction errors, reduction of instrumental drifts and bias, intercalibration biases, intercalibration between missions and combination of the different sea level data sets, and an improvement of the reference mean sea surface We also present preliminary independent validations of the SL_cci products, based on tide gauges comparison and a sea level budget closure approach, as well as comparisons with ocean reanalyses and climate model outputs

207 citations

Journal ArticleDOI
TL;DR: The Adaptive Leading Edge Subwaveform retracker (ALES) as discussed by the authors selects part of each returned echo and models it with a classic Brown functional form, by means of least square estimation whose convergence is found through the Nelder-Mead nonlinear optimisation technique.

185 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the detectability of mid-latitude Rossby waves in global ocean colour data from the Japanese Ocean Colour and Temperature Scanner (OCTS) and U.S. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiometers.
Abstract: We demonstrate for the first time the detectability of mid-latitude Rossby waves in global ocean colour data from the Japanese Ocean Colour and Temperature Scanner (OCTS) and U.S. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiometers. By producing longitude-time plots of the merged OCTS and SeaWiFS datasets we observe at some latitudes westward propagating signals. Their signature is much weaker than the annual phytoplankton cycle, but can be highlighted by filtering the plots. The main propagating speed is estimated with the Radon Transform and increases equatorward, as expected for Rossby waves. A comparison with both speeds derived from altimeter data and the zonal mean of the speed predicted by a recent theory of Rossby wave propagation shows a broad agreement. We conclude that Rossby waves are sometimes observable in the ocean colour field and thus have some effects on biology, and we suggest two simple hypotheses for the underlying interaction mechanism

154 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an automated procedure for identifying and tracking mesoscale features based on their SSH signatures yields 35,891 eddies with average lifetime of 32 weeks and an average propagation distance of 550 km.

1,744 citations

Journal ArticleDOI
TL;DR: In this article, 10 years of sea-surface height (SSH) fields constructed from the merged TOPEX/Poseidon (T/P) and ERS-1/2 altimeter datasets are analyzed to investigate mesoscale variability in the global ocean.
Abstract: [1] Ten years of sea-surface height (SSH) fields constructed from the merged TOPEX/Poseidon (T/P) and ERS-1/2 altimeter datasets are analyzed to investigate mesoscale variability in the global ocean. The higher resolution of the merged dataset reveals that more than 50% of the variability over much of the World Ocean is accounted for by eddies with amplitudes of 5–25 cm and diameters of 100–200 km. These eddies propagate nearly due west at approximately the phase speed of nondispersive baroclinic Rossby waves with preferences for slight poleward and equatorward deflection of cyclonic and anticyclonic eddies, respectively. The vast majority of the eddies are found to be nonlinear.

894 citations

01 Jan 2010
TL;DR: A 23-year database of calibrated and validated satellite altimeter measurements is used to investigate global changes in oceanic wind speed and wave height over this period and finds a general global trend of increasing values of windspeed and, to a lesser degree, wave height.
Abstract: Wind speeds over the world’s oceans have increased over the past two decades, as have wave heights. Studies of climate change typically consider measurements or predictions of temperature over extended periods of time. Climate, however, is much more than temperature. Over the oceans, changes in wind speed and the surface gravity waves generated by such winds play an important role. We used a 23-year database of calibrated and validated satellite altimeter measurements to investigate global changes in oceanic wind speed and wave height over this period. We find a general global trend of increasing values of wind speed and, to a lesser degree, wave height, over this period. The rate of increase is greater for extreme events as compared to the mean condition.

737 citations

Journal ArticleDOI
TL;DR: In this article, a new global monthly climatology of surface ocean DMS concentration and sea-to-air emission flux is presented as updates of those constructed 10 years ago, using interpolation/extrapolation techniques to project the discrete concentration data onto a first guess field based on Longhurst's biogeographic provinces.
Abstract: [1] The potentially significant role of the biogenic trace gas dimethylsulfide (DMS) in determining the Earth’s radiation budget makes it necessary to accurately reproduce seawater DMS distribution and quantify its global flux across the sea/air interface. Following a threefold increase of data (from 15,000 to over 47,000) in the global surface ocean DMS database over the last decade, new global monthly climatologies of surface ocean DMS concentration and sea‐to‐air emission flux are presented as updates of those constructed 10 years ago. Interpolation/extrapolation techniques were applied to project the discrete concentration data onto a first guess field based on Longhurst’s biogeographic provinces. Further objective analysis allowed us to obtain the final monthly maps. The new climatology projects DMS concentrations typically in the range of 1–7 nM, with higher levels occurring in the high latitudes, and with a general trend toward increasing concentration in summer. The increased size and distribution of the observations in the DMS database have produced in the new climatology substantially lower DMS concentrations in the polar latitudes and generally higher DMS concentrations in regions that were severely undersampled 10 years ago, such as the southern Indian Ocean. Using the new DMS concentration climatology in conjunction with state‐of‐the‐art parameterizations for the sea/air gas transfer velocity and climatological wind fields, we estimate that 28.1 (17.6–34.4) Tg of sulfur are transferred from the oceans into the atmosphere annually in the form of DMS. This represents a global emission increase of 17% with respect to the equivalent calculation using the previous climatology. This new DMS climatology represents a valuable tool for atmospheric chemistry, climate, and Earth System models.

584 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used reconstructed sea surface temperature datasets and century-long ocean and atmosphere reanalysis products to find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean cooling rate.
Abstract: Subtropical western boundary currents are warm, fast-flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake1, 2, 3, 4. The possibility that these highly energetic currents might change under greenhouse-gas forcing has raised significant concerns5, 6, 7, but detecting such changes is challenging owing to limited observations. Here, using reconstructed sea surface temperature datasets and century-long ocean and atmosphere reanalysis products, we find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean warming rate. The accelerated warming is associated with a synchronous poleward shift and/or intensification of global subtropical western boundary currents in conjunction with a systematic change in winds over both hemispheres. This enhanced warming may reduce the ability of the oceans to absorb anthropogenic carbon dioxide over these regions. However, uncertainties in detection and attribution of these warming trends remain, pointing to a need for a long-term monitoring network of the global western boundary currents and their extensions.

564 citations