scispace - formally typeset
Search or ask a question
Author

Parag Kulkarni

Bio: Parag Kulkarni is an academic researcher from Toshiba. The author has contributed to research in topics: Smart grid & Wireless network. The author has an hindex of 21, co-authored 67 publications receiving 3011 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The design goals and the techniques, which different LPWA technologies exploit to offer wide-area coverage to low-power devices at the expense of low data rates are presented.
Abstract: Low power wide area (LPWA) networks are attracting a lot of attention primarily because of their ability to offer affordable connectivity to the low-power devices distributed over very large geographical areas. In realizing the vision of the Internet of Things, LPWA technologies complement and sometimes supersede the conventional cellular and short range wireless technologies in performance for various emerging smart city and machine-to-machine applications. This review paper presents the design goals and the techniques, which different LPWA technologies exploit to offer wide-area coverage to low-power devices at the expense of low data rates. We survey several emerging LPWA technologies and the standardization activities carried out by different standards development organizations (e.g., IEEE, IETF, 3GPP, ETSI) as well as the industrial consortia built around individual LPWA technologies (e.g., LoRa Alliance, Weightless-SIG, and Dash7 alliance). We further note that LPWA technologies adopt similar approaches, thus sharing similar limitations and challenges. This paper expands on these research challenges and identifies potential directions to address them. While the proprietary LPWA technologies are already hitting the market with large nationwide roll-outs, this paper encourages an active engagement of the research community in solving problems that will shape the connectivity of tens of billions of devices in the next decade.

1,362 citations

Journal ArticleDOI
TL;DR: In this paper, the challenges and opportunities of communications research in the areas of smart grid and smart metering are discussed, and the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management.
Abstract: Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.

521 citations

Journal ArticleDOI
TL;DR: Some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management are focused on.
Abstract: Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.

382 citations

Proceedings ArticleDOI
13 Apr 2017
TL;DR: In this paper, the authors present LoRaWANSim, a simulator which extends the LoRaSim tool to support bidirectional communication, which is a salient feature not available in any other LoRa simulator.
Abstract: The need for low power, long range and low cost connectivity to meet the requirements of IoT applications has led to the emergence of Low Power Wide Area (LPWA) networking technologies. The promise of these technologies to wirelessly connect massive numbers of geographically dispersed devices at a low cost continues to attract a great deal of attention in the academic and commercial communities. Several rollouts are already underway even though the performance of these technologies is yet to be fully understood. In light of these developments, tools to carry out 'what-if analyses' and predeployment studies are needed to understand the implications of choices that are made at design time. While there are several promising technologies in the LPWA space, this paper specifically focuses on the LoRa/LoRaWAN technology. In particular, we present LoRaWANSim, a simulator which extends the LoRaSim tool to add support for the LoRaWAN MAC protocol, which employs bidirectional communication. This is a salient feature not available in any other LoRa simulator. Subsequently, we provide vital insights into the performance of LoRaWAN based networks through extensive simulations. In particular, we show that the achievable network capacity reported in earlier studies is quite optimistic. The introduction of downlink traffic can have a significant impact on the uplink throughput. The number of transmit attempts recommended in the LoRaWAN specification may not always be the best choice. We also highlight the energy consumption versus reliability trade-offs associated with the choice of number of retransmission attempts.

115 citations

Posted Content
TL;DR: In this paper, the authors present LoRaWANSim, a simulator that extends the LoRaSim tool to add support for LoRa-WAN MAC protocol, which employs bidirectional communication.
Abstract: The need for low power, long range and low cost connectivity to meet the requirements of IoT applications has led to the emergence of Low Power Wide Area (LPWA) networking technologies. The promise of these technologies to wirelessly connect massive numbers of geographically dispersed devices at a low cost continues to attract a great deal of attention in the academic and commercial communities. Several rollouts are already underway even though the performance of these technologies is yet to be fully understood. In light of these developments, tools to carry out `what-if analyses' and pre-deployment studies are needed to understand the implications of choices that are made at design time. While there are several promising technologies in the LPWA space, this paper specifically focuses on the LoRa/LoRaWAN technology. In particular, we present LoRaWANSim, a simulator which extends the LoRaSim tool to add support for the LoRaWAN MAC protocol, which employs bidirectional communication. This is a salient feature not available in any other LoRa simulator. Subsequently, we provide vital insights into the performance of LoRaWAN based networks through extensive simulations. In particular, we show that the achievable network capacity reported in earlier studies is quite optimistic. The introduction of downlink traffic can have a significant impact on the uplink throughput. The number of transmit attempts recommended in the LoRaWAN specification may not always be the best choice. We also highlight the energy consumption versus reliability trade-offs associated with the choice of number of retransmission attempts.

108 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors survey the literature till 2011 on the enabling technologies for the Smart Grid and explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.
Abstract: The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this article, we survey the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system. We also propose possible future directions in each system. colorred{Specifically, for the smart infrastructure system, we explore the smart energy subsystem, the smart information subsystem, and the smart communication subsystem.} For the smart management system, we explore various management objectives, such as improving energy efficiency, profiling demand, maximizing utility, reducing cost, and controlling emission. We also explore various management methods to achieve these objectives. For the smart protection system, we explore various failure protection mechanisms which improve the reliability of the Smart Grid, and explore the security and privacy issues in the Smart Grid.

2,433 citations

01 Jan 2012
TL;DR: This article surveys the literature till 2011 on the enabling technologies for the Smart Grid, and explores three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.

2,337 citations

Journal ArticleDOI
TL;DR: The blockchain taxonomy is given, the typical blockchain consensus algorithms are introduced, typical blockchain applications are reviewed, and the future directions in the blockchain technology are pointed out.
Abstract: Blockchain has numerous benefits such as decentralisation, persistency, anonymity and auditability. There is a wide spectrum of blockchain applications ranging from cryptocurrency, financial services, risk management, internet of things (IoT) to public and social services. Although a number of studies focus on using the blockchain technology in various application aspects, there is no comprehensive survey on the blockchain technology in both technological and application perspectives. To fill this gap, we conduct a comprehensive survey on the blockchain technology. In particular, this paper gives the blockchain taxonomy, introduces typical blockchain consensus algorithms, reviews blockchain applications and discusses technical challenges as well as recent advances in tackling the challenges. Moreover, this paper also points out the future directions in the blockchain technology.

1,928 citations

Journal ArticleDOI
TL;DR: In this article, a survey of demand response potentials and benefits in smart grids is presented, with reference to real industrial case studies and research projects, such as smart meters, energy controllers, communication systems, etc.
Abstract: The smart grid is conceived of as an electric grid that can deliver electricity in a controlled, smart way from points of generation to active consumers. Demand response (DR), by promoting the interaction and responsiveness of the customers, may offer a broad range of potential benefits on system operation and expansion and on market efficiency. Moreover, by improving the reliability of the power system and, in the long term, lowering peak demand, DR reduces overall plant and capital cost investments and postpones the need for network upgrades. In this paper a survey of DR potentials and benefits in smart grids is presented. Innovative enabling technologies and systems, such as smart meters, energy controllers, communication systems, decisive to facilitate the coordination of efficiency and DR in a smart grid, are described and discussed with reference to real industrial case studies and research projects.

1,901 citations

Journal ArticleDOI
TL;DR: This paper aims to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time ofFlight (RTOF), and received signal strength (RSS) based on technologies that have been proposed in the literature.
Abstract: Indoor localization has recently witnessed an increase in interest, due to the potential wide range of services it can provide by leveraging Internet of Things (IoT), and ubiquitous connectivity. Different techniques, wireless technologies and mechanisms have been proposed in the literature to provide indoor localization services in order to improve the services provided to the users. However, there is a lack of an up-to-date survey paper that incorporates some of the recently proposed accurate and reliable localization systems. In this paper, we aim to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time of flight (RTOF), and received signal strength (RSS); based on technologies, such as WiFi, radio frequency identification device (RFID), ultra wideband (UWB), Bluetooth, and systems that have been proposed in the literature. This paper primarily discusses localization and positioning of human users and their devices. We highlight the strengths of the existing systems proposed in the literature. In contrast with the existing surveys, we also evaluate different systems from the perspective of energy efficiency, availability, cost, reception range, latency, scalability, and tracking accuracy. Rather than comparing the technologies or techniques, we compare the localization systems and summarize their working principle. We also discuss remaining challenges to accurate indoor localization.

1,447 citations