scispace - formally typeset
Search or ask a question
Author

Parampreet Singh

Bio: Parampreet Singh is an academic researcher from Louisiana State University. The author has contributed to research in topics: Loop quantum cosmology & Loop quantum gravity. The author has an hindex of 49, co-authored 173 publications receiving 10230 citations. Previous affiliations of Parampreet Singh include Inter-University Centre for Astronomy and Astrophysics & Perimeter Institute for Theoretical Physics.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an improved Hamiltonian constraint operator is introduced in loop quantum cosmology for the isotropic model with a massless scalar field and the big bang is replaced by a quantum bounce.
Abstract: An improved Hamiltonian constraint operator is introduced in loop quantum cosmology. Quantum dynamics of the spatially flat, isotropic model with a massless scalar field is then studied in detail using analytical and numerical methods. The scalar field continues to serve as ''emergent time'', the big bang is again replaced by a quantum bounce, and quantum evolution remains deterministic across the deep Planck regime. However, while with the Hamiltonian constraint used so far in loop quantum cosmology the quantum bounce can occur even at low matter densities, with the new Hamiltonian constraint it occurs only at a Planck-scale density. Thus, the new quantum dynamics retains the attractive features of current evolutions in loop quantum cosmology but, at the same time, cures their main weakness.

1,171 citations

Journal ArticleDOI
TL;DR: Loop quantum cosmology (LQC) as mentioned in this paper is the result of applying principles of loop quantum gravity to cosmological settings, where quantum geometry creates a brand new repulsive force which is totally negligible at low spacetime curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction.
Abstract: Loop quantum cosmology (LQC) is the result of applying principles of loop quantum gravity (LQG) to cosmological settings. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of LQG. In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low spacetime curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction. In cosmological models, while Einstein's equations hold to an excellent degree of approximation at low curvature, they undergo major modifications in the Planck regime: for matter satisfying the usual energy conditions, any time a curvature invariant grows to the Planck scale, quantum geometry effects dilute it, thereby resolving singularities of general relativity. Quantum geometry corrections become more sophisticated as the models become richer. In particular, in anisotropic models, there are significant changes in the dynamics of shear potentials which tame their singular behavior in striking contrast to older results on anisotropies in bouncing models. Once singularities are resolved, the conceptual paradigm of cosmology changes and one has to revisit many of the standard issues—e.g. the 'horizon problem'—from a new perspective. Such conceptual issues as well as potential observational consequences of the new Planck scale physics are being explored, especially within the inflationary paradigm. These considerations have given rise to a burst of activity in LQC in recent years, with contributions from quantum gravity experts, mathematical physicists and cosmologists. The goal of this review is to provide an overview of the current state of the art in LQC for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general and cosmologists who wish to apply LQC to probe modifications in the standard paradigm of the early universe. In this review, effort has been made to streamline the material so that each of these communities can read only the sections they are most interested in, without loss of continuity.

1,162 citations

Journal ArticleDOI
TL;DR: The known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended, and unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.
Abstract: Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the ``emergent time'' idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.

820 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed analytical and numerical methods to analyze the quantum nature of the big bang in the setting of loop quantum cosmology and provided a conceptual framework and technical tools which can be used in more general models.
Abstract: Analytical and numerical methods are developed to analyze the quantum nature of the big bang in the setting of loop quantum cosmology. They enable one to explore the effects of quantum geometry both on the gravitational and matter sectors and significantly extend the known results on the resolution of the big bang singularity. Specifically, the following results are established for the homogeneous isotropic model with a massless scalar field: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the 'emergent time' idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime. Our constructions also provide a conceptual framework and technical tools which can be used in more general models. In this sense, they provide foundations for analyzing physical issues associated with the Planck regime of loop quantum cosmology as a whole.

653 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the general features of a dynamics of a phantom field in the cosmological context and demonstrated that the phantom field can successfully drive the observed current accelerated expansion of the Universe with the equation of state parameter.
Abstract: We study the general features of a dynamics of a phantom field in the cosmological context. In the case of an inverse coshyperbolic potential, we demonstrate that the phantom field can successfully drive the observed current accelerated expansion of the Universe with the equation of state parameter ${w}_{\ensuremath{\varphi}}l\ensuremath{-}1.$ The de Sitter universe turns out to be the late time attractor of the model. The main features of the dynamics are independent of the initial conditions and the parameters of the model. The model fits the supernova data very well, allowing for $\ensuremath{-}2.4l{w}_{\ensuremath{\varphi}}l\ensuremath{-}1$ at a 95% confidence level.

524 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence and tachyon.
Abstract: We review in detail a number of approaches that have been adopted to try and explain the remarkable observation of our accelerating universe. In particular we discuss the arguments for and recent progress made towards understanding the nature of dark energy. We review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence, tachyon, phantom and dilatonic models. The importance of cosmological scaling solutions is emphasized when studying the dynamical system of scalar fields including coupled dark energy. We study the evolution of cosmological perturbations allowing us to confront them with the observation of the Cosmic Microwave Background and Large Scale Structure and demonstrate how it is possible in principle to reconstruct the equation of state of dark energy by also using Supernovae Ia observational data. We also discuss in detail the nature of tracking solutions in cosmology, particle physics and braneworld models of dark energy, the nature of possible future singularities, the effect of higher order curvature terms to avoid a Big Rip singularity, and approaches to modifying gravity which leads to a late-time accelerated expansion without recourse to a new form of dark energy.

5,954 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the most important aspects of the different classes of modified gravity theories, including higher-order curvature invariants and metric affine.
Abstract: Modified gravity theories have received increased attention lately due to combined motivation coming from high-energy physics, cosmology, and astrophysics. Among numerous alternatives to Einstein's theory of gravity, theories that include higher-order curvature invariants, and specifically the particular class of $f(R)$ theories, have a long history. In the last five years there has been a new stimulus for their study, leading to a number of interesting results. Here $f(R)$ theories of gravity are reviewed in an attempt to comprehensively present their most important aspects and cover the largest possible portion of the relevant literature. All known formalisms are presented---metric, Palatini, and metric affine---and the following topics are discussed: motivation; actions, field equations, and theoretical aspects; equivalence with other theories; cosmological aspects and constraints; viability criteria; and astrophysical applications.

4,027 citations

Journal ArticleDOI
TL;DR: In this article, the structure and cosmological properties of a number of modified theories, including traditional F (R ) and Hořava-Lifshitz F ( R ) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, nonminimally coupled models, and power-counting renormalizable covariant gravity are discussed.

3,513 citations

Journal ArticleDOI
TL;DR: Various applications of f(R) theories to cosmology and gravity — such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds are reviewed.
Abstract: Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.

3,375 citations