scispace - formally typeset
Search or ask a question
Author

Parimal Routh

Bio: Parimal Routh is an academic researcher from Charuchandra College. The author has contributed to research in topics: Graphene & Supercapacitor. The author has an hindex of 12, co-authored 21 publications receiving 2047 citations. Previous affiliations of Parimal Routh include Indian Association for the Cultivation of Science & Nanyang Technological University.

Papers
More filters
Journal ArticleDOI
TL;DR: The distinct properties resulting from various dopants, different doping levels and configurations, and synergistic effects from co-dopants are emphasized, hoping to assist a better understanding of doped graphene materials.
Abstract: Heteroatom doping can endow graphene with various new or improved electromagnetic, physicochemical, optical, and structural properties. This greatly extends the arsenal of graphene materials and their potential for a spectrum of applications. Considering the latest developments, we comprehensively and critically discuss the syntheses, properties and emerging applications of the growing family of heteroatom-doped graphene materials. The advantages, disadvantages, and preferential doping features of current synthesis approaches are compared, aiming to provide clues for developing new and controllable synthetic routes. We emphasize the distinct properties resulting from various dopants, different doping levels and configurations, and synergistic effects from co-dopants, hoping to assist a better understanding of doped graphene materials. The mechanisms underlying their advantageous uses for energy storage, energy conversion, sensing, and gas storage are highlighted, aiming to stimulate more competent applications.

1,440 citations

Journal ArticleDOI
TL;DR: In this article, a facile method to electrochemically exfoliate GQDs from three-dimensional graphene grown by chemical vapor deposition (CVD) is reported, which is used for sensitive and specific detection of ferric ions.
Abstract: Owing to their small size, biocompatibility, unique and tunable photoluminescence, and physicochemical properties, graphene quantum dots (GQDs) are an emerging class of zero-dimensional materials promising a wide spectrum of novel applications in bio-imaging, optical, and electrochemical sensors, energy devices, and so forth. Their widespread use, however, is largely limited by the current lack of high yield synthesis methods of high-quality GQDs. In this contribution, a facile method to electrochemically exfoliate GQDs from three-dimensional graphene grown by chemical vapor deposition (CVD) is reported. Furthermore, the use of such GQDs for sensitive and specific detection of ferric ions is demonstrated.

445 citations

Journal ArticleDOI
TL;DR: A simple strategy is demonstrated for the synthesis of nitrogen and phosphorus co-doped GQDs from a single biomolecule precursor (adenosine triphosphate - ATP) that exhibit high fluorescence quantum yield, strong two-photon upconversion, small molecular weight, high photostability, and good biocompatibility.
Abstract: Graphene quantum dots (GQDs) are emerging zero-dimensional materials promising a wide spectrum of applications, particularly, as superior fluorescent reporters for bio-imaging and optical sensing. Heteroatom doping can endow GQDs with new or improved photoluminescence properties. Here, we demonstrate a simple strategy for the synthesis of nitrogen and phosphorus co-doped GQDs from a single biomolecule precursor (adenosine triphosphate – ATP). Such ATP-GQDs exhibit high fluorescence quantum yield, strong two-photon upconversion, small molecular weight, high photostability, and good biocompatibility. Furthermore, transferrin conjugated ATP-GQDs have been used for imaging and real-time tracking of transferrin receptors in live cells.

160 citations

Journal ArticleDOI
TL;DR: A new and facile approach for synthesizing graphene quantum dots (GQDs) using sono-Fenton reaction in an aqueous dispersion of graphene oxide (GO) is reported.
Abstract: A new and facile approach for synthesizing graphene quantum dots (GQDs) using sono-Fenton reaction in an aqueous dispersion of graphene oxide (GO) is reported. The transmission electron microscopy (TEM) micrographs of GQDs indicate its average diameter as ∼5.6 ± 1.4 nm having a lattice parameter of 0.24 nm. GQDs are used to fabricate composites (PG) with a water-soluble polymer, polythiophene-g-poly[(diethylene glycol methyl ether methacrylate)-co-poly(N,N-dimethylaminoethyl methacrylate)] [PT-g-P(MeO2MA-co-DMAEMA), P]. TEM micrographs indicate that both P and PG possess distinct core–shell morphology and the average particle size of P (0.16 ± 0.08 μm) increases in PG (0.95 ± 0.45 μm). Fourier transform infrared and X-ray photoelectron spectrometry spectra suggest an interaction between −OH and −COOH groups of GQDs and −NMe2 groups of P. A decrease of the intensity ratio of Raman D and G bands (ID/IG) is noticed during GQD and PG formation. In contrast to GO, GQDs do not exhibit any absorption peak for it...

92 citations

Journal ArticleDOI
01 Jan 2018-Small
TL;DR: A facile new synthetic method of forming WO3 from tungsten sulfide, WS2 is reported and the negative differential resistance (NDR) property of both WO2 and WO4 is reported for the first time and NDR is explained with density of state approach.
Abstract: Tungsten oxide (WO3 ) is an emerging 2D nanomaterial possessing unique physicochemical properties extending a wide spectrum of novel applications which are limited due to lack of efficient synthesis of high-quality WO3 . Here, a facile new synthetic method of forming WO3 from tungsten sulfide, WS2 is reported. Spectroscopic, microscopic, and X-ray studies indicate formation of flower like aggregated nanosized WO3 plates of highly crystalline cubic phase via intermediate orthorhombic tungstite, WO3. H2 O phase. The charge storage ability of WO3 is extremely high (508 F g-1 at current density of 1 A g-1 ) at negative potential range compared to tungstite (194 F g-1 at 1 A g-1 ). Moreover, high (97%) capacity retention after 1000 cycles and capacitive charge storage nature of WO3 electrode suggest its supremacy as a negative electrode of supercapacitors. The asymmetric supercapacitor, based on the WO3 as a negative electrode and mildly reduced graphene oxide as a positive electrode, manifests high energy density of 218.3 mWhm-2 at power density 1750 mWm-2 , and exceptionally high power density, 17 500 mW m-2 , with energy density of 121.5 mWh m-2 . Furthermore, the negative differential resistance (NDR) property of both WO3 and WO3 .H2 O are reported for the first time and NDR is explained with density of state approach.

64 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
01 Apr 2015-Small
TL;DR: The properties and synthesis methods of these carbon nanodots are reviewed and emphasis is placed on their biological (both fundamental and theranostic) applications.
Abstract: The emerging graphene quantum dots (GQDs) and carbon dots (C-dots) have gained tremendous attention for their enormous potentials for biomedical applications, owing to their unique and tunable photoluminescence properties, exceptional physicochemical properties, high photostability, biocompatibility, and small size. This article aims to update the latest results in this rapidly evolving field and to provide critical insights to inspire more exciting developments. We comparatively review the properties and synthesis methods of these carbon nanodots and place emphasis on their biological (both fundamental and theranostic) applications.

1,665 citations