scispace - formally typeset
Search or ask a question
Author

Parisa Rashidi

Bio: Parisa Rashidi is an academic researcher from University of Florida. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 29, co-authored 80 publications receiving 4842 citations. Previous affiliations of Parisa Rashidi include Northwestern University & Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: The emergence of `ambient-assisted living’ (AAL) tools for older adults based on ambient intelligence paradigm is summarized and the state-of-the-art AAL technologies, tools, and techniques are summarized.
Abstract: In recent years, we have witnessed a rapid surge in assisted living technologies due to a rapidly aging society. The aging population, the increasing cost of formal health care, the caregiver burden, and the importance that the individuals place on living independently, all motivate development of innovative-assisted living technologies for safe and independent aging. In this survey, we will summarize the emergence of `ambient-assisted living” (AAL) tools for older adults based on ambient intelligence paradigm. We will summarize the state-of-the-art AAL technologies, tools, and techniques, and we will look at current and future challenges.

1,000 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey the current research on applying deep learning to clinical tasks based on EHR data, where they find a variety of deep learning techniques and frameworks being applied to several types of clinical applications including information extraction, representation learning, outcome prediction, phenotyping, and deidentification.
Abstract: The past decade has seen an explosion in the amount of digital information stored in electronic health records (EHRs). While primarily designed for archiving patient information and performing administrative healthcare tasks like billing, many researchers have found secondary use of these records for various clinical informatics applications. Over the same period, the machine learning community has seen widespread advances in the field of deep learning. In this review, we survey the current research on applying deep learning to clinical tasks based on EHR data, where we find a variety of deep learning techniques and frameworks being applied to several types of clinical applications including information extraction, representation learning, outcome prediction, phenotyping, and deidentification. We identify several limitations of current research involving topics such as model interpretability, data heterogeneity, and lack of universal benchmarks. We conclude by summarizing the state of the field and identifying avenues of future deep EHR research.

762 citations

Journal ArticleDOI
01 Dec 2013
TL;DR: The state-of-the-art artificial intelligence (AI) methodologies used for developing AmI system in the healthcare domain are summarized, including various learning techniques (for learning from user interaction), reasoning techniques ( for reasoning about users' goals and intensions), and planning techniques (For planning activities and interactions).
Abstract: Ambient Intelligence (AmI) is a new paradigm in information technology aimed at empowering people's capabilities by means of digital environments that are sensitive, adaptive, and responsive to human needs, habits, gestures, and emotions. This futuristic vision of daily environment will enable innovative human-machine interactions characterized by pervasive, unobtrusive, and anticipatory communications. Such innovative interaction paradigms make AmI technology a suitable candidate for developing various real life solutions, including in the healthcare domain. This survey will discuss the emergence of AmI techniques in the healthcare domain, in order to provide the research community with the necessary background. We will examine the infrastructure and technology required for achieving the vision of AmI, such as smart environments and wearable medical devices. We will summarize the state-of-the-art artificial intelligence (AI) methodologies used for developing AmI system in the healthcare domain, including various learning techniques (for learning from user interaction), reasoning techniques (for reasoning about users' goals and intensions), and planning techniques (for planning activities and interactions). We will also discuss how AmI technology might support people affected by various physical or mental disabilities or chronic disease. Finally, we will point to some of the successful case studies in the area and we will look at the current and future challenges to draw upon the possible future research paths.

565 citations

Journal ArticleDOI
TL;DR: This paper introduces an automated approach to activity tracking that identifies frequent activities that naturally occur in an individual's routine and can then track the occurrence of regular activities to monitor functional health and to detect changes in anindividual's patterns and lifestyle.
Abstract: The machine learning and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track activities that people normally perform as part of their daily routines. Although approaches do exist for recognizing activities, the approaches are applied to activities that have been preselected and for which labeled training data are available. In contrast, we introduce an automated approach to activity tracking that identifies frequent activities that naturally occur in an individual's routine. With this capability, we can then track the occurrence of regular activities to monitor functional health and to detect changes in an individual's patterns and lifestyle. In this paper, we describe our activity mining and tracking approach, and validate our algorithms on data collected in physical smart environments.

468 citations

Journal ArticleDOI
01 Sep 2009
TL;DR: CASAS is an adaptive smart-home system that utilizes machine learning techniques to discover patterns in resident's daily activities and to generate automation polices that mimic these patterns.
Abstract: Advancements in supporting fields have increased the likelihood that smart-home technologies will become part of our everyday environments. However, many of these technologies are brittle and do not adapt to the user's explicit or implicit wishes. Here, we introduce CASAS, an adaptive smart-home system that utilizes machine learning techniques to discover patterns in resident's daily activities and to generate automation polices that mimic these patterns. Our approach does not make any assumptions about the activity structure or other underlying model parameters but leaves it completely to our algorithms to discover the smart-home resident's patterns. Another important aspect of CASAS is that it can adapt to changes in the discovered patterns based on the resident implicit and explicit feedback and can automatically update its model to reflect the changes. In this paper, we provide a description of the CASAS technologies and the results of experiments performed on both synthetic and real-world data.

421 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
18 Jan 2016-Sensors
TL;DR: A generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which is suitable for multimodal wearable sensors, does not require expert knowledge in designing features, and explicitly models the temporal dynamics of feature activations is proposed.
Abstract: Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation.

1,896 citations

Journal ArticleDOI
TL;DR: How these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems are described.
Abstract: Here we present deep-learning techniques for healthcare, centering our discussion on deep learning in computer vision, natural language processing, reinforcement learning, and generalized methods. We describe how these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems. Our discussion of computer vision focuses largely on medical imaging, and we describe the application of natural language processing to domains such as electronic health record data. Similarly, reinforcement learning is discussed in the context of robotic-assisted surgery, and generalized deep-learning methods for genomics are reviewed.

1,843 citations

Journal ArticleDOI
08 May 2018
TL;DR: A representation of patients’ entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format is proposed, and it is demonstrated that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization.
Abstract: Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR data, a labor-intensive process that discards the vast majority of information in each patient’s record. We propose a representation of patients’ entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two US academic medical centers with 216,221 adult patients hospitalized for at least 24 h. In the sequential format we propose, this volume of EHR data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for tasks such as predicting: in-hospital mortality (area under the receiver operator curve [AUROC] across sites 0.93–0.94), 30-day unplanned readmission (AUROC 0.75–0.76), prolonged length of stay (AUROC 0.85–0.86), and all of a patient’s final discharge diagnoses (frequency-weighted AUROC 0.90). These models outperformed traditional, clinically-used predictive models in all cases. We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios. In a case study of a particular prediction, we demonstrate that neural networks can be used to identify relevant information from the patient’s chart.

1,388 citations