scispace - formally typeset
Search or ask a question
Author

Parveen Saini

Bio: Parveen Saini is an academic researcher from Council of Scientific and Industrial Research. The author has contributed to research in topics: Electromagnetic shielding & Polyaniline. The author has an hindex of 29, co-authored 64 publications receiving 3467 citations. Previous affiliations of Parveen Saini include National Physical Laboratory & Indian Institutes of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, high conducting polyaniline (PANI)-multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by in situ polymerization.

605 citations

Journal ArticleDOI
TL;DR: In this paper, X-ray diffraction patterns and transmission electron microscopy images confirmed the formation of PANI coating and incorporation of BaTiO3 or Fe3O4 nanoparticles.
Abstract: Composite absorbers based on conducting fabrics possessing moderate conductivity and dielectric/magnetic properties were prepared by in situ incorporation of nanoparticles of BaTiO3 (15–25 nm) or Fe3O4 (25–40 nm) within coated poly(aniline) (PANI) matrix. The X-ray diffraction patterns and transmission electron microscopy images confirmed the formation of PANI coating and incorporation of BaTiO3 or Fe3O4 nanoparticles. Scanning electron microscopy images show formation of thick and uniform coating of PANI over individual fibers and in interweave regions. The dielectric studies show that incorporation of BaTiO3 lead to enhancement of dielectric properties of PANI whereas magnetization measurements revealed that incorporation of Fe3O4 resulted in noticeable improvement in magnetic properties with saturation magnetization of 17.9 emu/g. The Ku-band (12.4–18.0 GHz) shielding studies revealed that pure PANI-coated fabric show total shielding effectiveness (SET) of −15.3 dB which enhanced to −16.8 and −19.4 dB ...

319 citations

Journal ArticleDOI
TL;DR: In this article, PANI and polyaniline (PANI)-coated multi-walled carbon nanotubes (MWCNTs) are used for making efficient microwave absorbers.

248 citations

Journal ArticleDOI
TL;DR: This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization and the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).
Abstract: Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)–tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4–18 GHz) network analysis of these composites shows exceptional microwave shielding response with absorption dominated total shielding effectiveness (SET) value of −71.5 dB (blockage of more than 99.99999% of incident radiation) which is the highest value reported in the literature. Such a high attenuation level, which critically depends on the fraction of BaTiO3 is attributed to optimized dielectric and electrical attributes. This demonstrates the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).

231 citations

Journal ArticleDOI
TL;DR: The studies show that the composite can be used as structurally strong EMI shielding material and the mechanical properties of the composites were found to be comparable or better than the pure polymer.
Abstract: Electromagnetic interference (EMI) shielding effectiveness (SE) of multi-walled carbon nanotubes–polymethyl methacrylate (MWCNT–PMMA) composites prepared by two different techniques was measured. EMI SE up to 40 dB in the frequency range 8.2–12.4 GHz (X-band) was achieved by stacking seven layers of 0.3-mm thick MWCNT–PMMA composite films compared with 30 dB achieved by stacking two layers of 1.1-mm thick MWCNT–PMMA bulk composite. The characteristic EMI SE graphs of the composites and the mechanism of shielding have been discussed. SE in this frequency range is found to be dominated by absorption. The mechanical properties (tensile, flexural strength and modulus) of the composites were found to be comparable or better than the pure polymer. The studies therefore show that the composite can be used as structurally strong EMI shielding material.

187 citations


Cited by
More filters
Journal ArticleDOI
09 Sep 2016-Science
TL;DR: The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
Abstract: Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

3,251 citations

Journal ArticleDOI
TL;DR: The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated and it is shown that via physical compression, the microwave absorption performance can be tuned.
Abstract: The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated. Simply via physical compression, the microwave absorption performance can be tuned. The qualified bandwidth coverage of 93.8% (60.5 GHz/64.5 GHz) is achieved for the GF under 90% compressive strain (1.0 mm thickness). This mainly because of the 3D conductive network.

1,533 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of the intrinsic mechanical properties of the graphene-family of materials along with the preparation and properties of bulk graphene-based nanocomposites is thoroughly examined.

1,531 citations

Journal ArticleDOI
TL;DR: For the first time, an efficient and facile approach is reported to fabricate freestanding, flexible, and hydrophobic MXene foam with reasonable strength by assembling MXene sheets into films followed by a hydrazine-induced foaming process.
Abstract: Ultrathin, lightweight, and flexible electromagnetic-interference (EMI) shielding materials are urgently required to manage increasingly serious radiation pollution. 2D transition-metal carbides (MXenes) are considered promising alternatives to graphene for providing excellent EMI-shielding performance due to their outstanding metallic electrical conductivity. However, the hydrophilicity of MXene films may affect their stability and reliability when applied in moist or wet environments. Herein, for the first time, an efficient and facile approach is reported to fabricate freestanding, flexible, and hydrophobic MXene foam with reasonable strength by assembling MXene sheets into films followed by a hydrazine-induced foaming process. In striking contrast to well-known hydrophilic MXene materials, the MXene foams surprisingly exhibit hydrophobic surfaces and outstanding water resistance and durability. More interestingly, a much enhanced EMI-shielding effectiveness of ≈70 dB is achieved for the lightweight MXene foam as compared to its unfoamed film counterpart (53 dB) due to the highly efficient wave attenuation in the favorable porous structure. Therefore, the hydrophobic, flexible, and lightweight MXene foam with an excellent EMI-shielding performance is highly promising for applications in aerospace and portable and wearable smart electronics.

1,241 citations

Journal ArticleDOI
TL;DR: In this article, a perspective on the experimental efforts toward the development of microwave absorbers composed of carbonaceous inclusions in a polymer matrix is presented. But the authors focus on the application for which the absorber is intended, weight reduction and optimization of the operating bandwidth are two important issues.
Abstract: Carbon (C) is a crucial material for many branches of modern technology. A growing number of demanding applications in electronics and telecommunications rely on the unique properties of C allotropes. The need for microwave absorbers and radar-absorbing materials is ever growing in military applications (reduction of radar signature of aircraft, ships, tanks, and targets) as well as in civilian applications (reduction of electromagnetic interference among components and circuits, reduction of the back-radiation of microstrip radiators). Whatever the application for which the absorber is intended, weight reduction and optimization of the operating bandwidth are two important issues. A composite absorber that uses carbonaceous particles in combination with a polymer matrix offers a large flexibility for design and properties control, as the composite can be tuned and optimized via changes in both the carbonaceous inclusions (C black, C nanotube, C fiber, graphene) and the embedding matrix (rubber, thermoplastic). This paper offers a perspective on the experimental efforts toward the development of microwave absorbers composed of carbonaceous inclusions in a polymer matrix. The absorption properties of such composites can be tailored through changes in geometry, composition, morphology, and volume fraction of the filler particles. Polymercomposites filled with carbonaceous particles provide a versatile system to probe physical properties at the nanoscale of fundamental interest and of relevance to a wide range of potential applications that span radar absorption, electromagnetic protection from natural phenomena (lightning), shielding for particle accelerators in nuclear physics, nuclear electromagnetic pulse protection, electromagnetic compatibility for electronic devices, high-intensity radiated field protection, anechoic chambers, and human exposure mitigation. Carbonaceous particles are also relevant to future applications that require environmentally benign and mechanically flexible materials.

1,026 citations