scispace - formally typeset
Search or ask a question

Showing papers by "Parviz Moin published in 1994"


Journal ArticleDOI
TL;DR: In this article, the authors explore concepts for active control of turbulent boundary layers leading to skin-friction reduction using the direct numerical simulation technique and show that significant drag reduction is achieved when the surface boundary condition is modified to suppress the dynamically significant coherent structures present in the wall region.
Abstract: The objective of this study is to explore concepts for active control of turbulent boundary layers leading to skin-friction reduction using the direct numerical simulation technique. Significant drag reduction is achieved when the surface boundary condition is modified to suppress the dynamically significant coherent structures present in the wall region. The drag reduction is accompanied by significant reduction in the intensity of the wall-layer structures and reductions in the magnitude of Reynolds shear stress throughout the flow. The apparent outward shift of turbulence statistics in the controlled flows indicates a displaced virtual origin of the boundary layer and a thickened sublayer. Time sequences of the flow fields show that there are essentially two drag-reduction mechanisms. Firstly, within a short time after the control is applied, drag is reduced mainly by deterring the sweep motion without modifying the primary streamwise vortices above the wall. Consequently, the high-shear-rate regions on the wall are moved to the interior of the channel by the control schemes. Secondly, the active control changes the evolution of the wall vorticity layer by stabilizing and preventing lifting of the spanwise vorticity near the wall, which may suppress a source of new streamwise vortices above the wall.

756 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of large computational time steps on the computed turbulence were investigated using a fully implicit method in turbulent channel flow computations and the largest computational time step in wall units which led to accurate prediction of turbulence statistics was determined.

475 citations


01 Jul 1994
TL;DR: In this article, the effects of large computational time steps on the computed turbulence were investigated using a fully implicit method in turbulent channel flow computations and the largest computational time step in wall units which led to accurate prediction of turbulence statistics was determined.
Abstract: Effects of large computational time steps on the computed turbulence were investigated using a fully implicit method. In turbulent channel flow computations the largest computational time step in wall units which led to accurate prediction of turbulence statistics was determined. Turbulence fluctuations could not be sustained if the computational time step was near or larger than the Kolmogorov time scale.

470 citations


Book
01 Jan 1994
TL;DR: In this paper, recent developments in three dimensional and unsteady turbulence boundary layer computations are discussed, including the physics of convention solidification interaction, the continental shelf bottom boundary layer, gravity currents in rotating systems, eddies, waves, circulation, and mixing.
Abstract: This book covers the following topics: recent developments in three dimensional and unsteady turbulence boundary-layer computations; flows far from equilibrium via molecular dynamics; physics of convention-solidification interaction; the continental shelf bottom boundary layer; gravity currents in rotating systems; strange attractors in fluids: another view; eddies, waves, circulation, and mixing: statistical geofluid mechanics; regular and mach reflection of shock waves; ship propellers; coherent structures; the critical layer and stability; general circulation of the oceans; characteristic-based schemes for the euler equations; vortex flows in aerodynamics; steady and unsteady boundary-layer separation; and wind wave prediction.

183 citations


Journal ArticleDOI
TL;DR: A brief review of active feedback control of turbulent flows is presented in this article, emphasizing the mathematical techniques involved and comparing the extent to which they are based on the governing flow equations.
Abstract: A brief review of current approaches to active feedback control of the fluctuations arising in turbulent flows is presented, emphasizing the mathematical techniques involved. Active feedback control schemes are categorized and compared by examining the extent to which they are based on the governing flow equations. These schemes are broken down into the following categories: adaptive schemes, schemes based on heuristic physical arguments, schemes based on a dynamical systems approach, and schemes based on optimal control theory applied directly to the NavierStokes equations. Recent advances in methods of implementing small scale flow control ideas are also reviewed.

171 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the scattering of plane sound waves by a vortex by solving the compressible Navier-Stokes equations numerically and analytically with asymptotic expansions.
Abstract: The scattering of plane sound waves by a vortex is investigated by solving the compressible Navier-Stokes equations numerically, and analytically with asymptotic expansions. Numerical errors associated with discretization and boundary conditions are made small by using high-order-accurate spatial differentiation and time marching schemes along with accurate non-reflecting boundary conditions. The accuracy of computations of flow fields with acoustic waves of amplitude five orders of magnitude smaller than the hydrodynamic fluctuations is directly verified. The properties of the scattered field are examined in detail. The results reveal inadequacies in previous vortex scattering theories when the circulation of the vortex is non-zero and refraction by the slowly decaying vortex flow field is important. Approximate analytical solutions that account for the refraction effect are developed and found to be in good agreement with the computations and experiments. The prediction of the sound produced by turbulent flow requires a detailed knowledge of acoustic source terms. Direct computation of both the acoustic sources and far-field sound using the unsteady Navier-Stokes equations allows direct validation of aeroacoustic theories. In a recent review by Crighton (1988), the difficulties involved in direct computations of aeroacoustic fields are discussed. These include: the large extent of the acoustic field compared with the flow field; the small energy of the acoustic field compared to the flow field; and the possibility that numerical discretization may introduce a significant sound source due to the acoustic inefficiency of low-Mach-number flows. In order to address these difficulties, Crighton proposed that direct computations be performed on elementary model aeroacoustic problems whose physics are well understood. For this reason, and to validate our numerical scheme for direct computation of aeroacoustic problems, we investigate the scattering of sound waves by a compressible viscous vortex. This problem has received significant attention, and thus provides a large database of theory, numerics and experiment with which detailed comparisons may be made. Yet there is significant disagreement amongst the various theories, which has not yet been fully rectified. Therefore, the purpose of the current work is twofold: to validate our numerical scheme for direct computation of aeroacoustic problems using the unsteady Navier-Stokes equations, and to investigate the scattering of sound waves by a compressible viscous vortex.

146 citations


Journal ArticleDOI
TL;DR: In this article, the effects of the transverse curvature on axial flow boundary layers on long cylinders were analyzed and compared with those of the plane channel simulation of Kim, Moin & Moser (1987), performed at a similar Reynolds number.
Abstract: Convex transverse curvature effects in wall-bounded turbulent flows are significant if the boundary-layer thickness is large compared to the radius of curvature (large γ = δ/a). The curvature affects the inner part of the flow if a+, the cylinder radius in wall units, is small. Two direct numerical simulations of a model problem approximating axial flow boundary layers on long cylinders were performed for γ = 5 (a+ ≈ 43) and γ = 11 (a+ ≈ 21). Statistical and structural data were extracted from the computed flow fields. The effects of the transverse curvature were identified by comparing the present results with those of the plane channel simulation of Kim, Moin & Moser (1987), performed at a similar Reynolds number. As the curvature increases, the skin friction increases, the slope of the logarithmic region decreases and turbulence intensities are reduced. Several turbulence statistics are found to scale with a curvature dependent velocity scale derived from the mean momentum equation. Near the wall, the flow is more anisotropic than in the plane channel with a larger percentage of the turbulent kinetic energy resulting from the streamwise velocity fluctuations. As the curvature increases, regions of strong normal vorticity develop near the wall.

67 citations


Journal ArticleDOI
TL;DR: In this article, the effects of convex transverse curvature on the wall pressure fluctuations were studied through direct numerical simulations of a model problem approximating axial flow boundary layers on long cylinders.
Abstract: The effects of convex transverse curvature on the wall pressure fluctuations were studied through direct numerical simulations. The flow regime of interest is characterized by large ratio of the shear-layer thickness to the radius of curvature (γ = δ/a) and by small a+, the radius of curvature in wall units. Two direct numerical simulations of a model problem approximating axial flow boundary layers on long cylinders were performed for γ = 5 (a+ ≈ 43) and γ = 11 (a+ ≈ 21). The space-time characteristics of the wall pressure fluctuations of the plane channel flow simulation of Kim, Moin & Moser (1987), which were studied by Choi & Moin (1990) are used to assess the effects of curvature. As the curvature increases the root-mean-square (r.m.s.) pressure fluctuations decrease and the ratio of the streamwise to spanwise lengthscales of the wall pressure fluctuations increases. Fractional contributions from various layers in the flow to the wall r.m.s. pressure fluctuations are marginally affected by the curvature. Curvature-dependent timescales and lengthscales are identified that collapse the high-frequency range of the wall pressure temporal spectra and the high wave-number range of the wall pressure streamwise spectra of flows with different curvatures. Taylor's hypothesis holds for the wall pressure fluctuations with a lower convection velocity than in the planar case.

31 citations


Journal ArticleDOI
TL;DR: In this article, a homogeneous rapid distortion theory is used to study the response of shear flows and axisymmetric turbulence to rapid one-dimensional compression, and both normal and oblique compressions are considered.
Abstract: Homogeneous rapid distortion theory is used to study the response of shear flows and axisymmetric turbulence to rapid one‐dimensional compression. In the shear flow problem, both normal and oblique compressions are considered. The response of these anisotropic flows to compression is found to be quite different from that of isotropic turbulence. Upon normal compression, the amplification of the streamwise component of kinetic energy and the total kinetic energy in shear flows is higher than that in isotropic turbulence. Also, normal compression decreases the magnitude of the Reynolds shear stress by amplifying the pressure–strain correlation in the shear stress equation. Obliquity of compression (defined as the angle between the directions of shear and compression) is seen to significantly affect the evolution of the Reynolds stresses. For a range of oblique angles from −60° to 60°, the amplification of streamwise kinetic energy and total kinetic energy decrease with increasing magnitude of the oblique an...

30 citations


Proceedings ArticleDOI
10 Jan 1994

28 citations


Journal Article
TL;DR: In this article, the interaction of an isotropic field of acoustic waves with a normal shock wave is studied. But the analysis is different from that of vortical fluctuations.
Abstract: Moore's (1954) inviscid linear analysis of the interaction of a shock wave with a plane acoustic wave is evaluated by comparison to computation. The analysis is then extended to study the interaction of an isotropic field of acoustic waves with a normal shock wave. The evolution of fluctuating kinetic energy, sound level and thermodynamic fluctuations across the shock wave are examined in detail. The interaction of acoustic fluctuations with the shock is notably different from that of vortical fluctuations. The kinetic energy of the acoustic fluctuations decreases across the shock wave for Mach numbers between 1.25 and 1.8. For Mach numbers exceeding 3, the kinetic energy amplifies by levels that significantly exceed those found in the interaction of vortical fluctuations with the shock. Upon interacting with the shock wave, the acoustic waves generate vortical fluctuations whose contribution to the far-field kinetic energy increases with increasing Mach number. The level of sound increases across the shock wave. The rise in the sound pressure level across the shock varies from 5 to 20 dB for Mach number varying from 1.5 to 5. The fluctuations behind the shock wave are nearly isentropic for Mach number less than 1.5, beyond which the generation of entropy fluctuations becomes significant.

01 Dec 1994
TL;DR: In this article, the dynamic modeling procedure for large eddy simulation of turbulent flows is reviewed and recent developments in the theoretical aspects and applications are described, and methods for inclusion of backscatter of energy from small to large scale motions are presented.
Abstract: The dynamic modeling procedure for large eddy simulation of turbulent flows is reviewed and recent developments in the theoretical aspects and applications are described. Methods for inclusion of backscatter of energy from small to large scale motions are presented. New formulations of the dynamic procedure are proposed which are optimized based on the subgrid scale flux vector or the energy dissipation rate instead of the subgrid scale stress tensor. Recent results from application of the model to forced isotropic turbulence with an inertial subrange, flow over a backward facing step at Reynolds number of 28000, and flow over a concave curved surface are presented.