scispace - formally typeset
P

Parviz Moin

Researcher at Stanford University

Publications -  495
Citations -  66028

Parviz Moin is an academic researcher from Stanford University. The author has contributed to research in topics: Turbulence & Large eddy simulation. The author has an hindex of 116, co-authored 473 publications receiving 60521 citations. Previous affiliations of Parviz Moin include Center for Turbulence Research & Ames Research Center.

Papers
More filters
Journal ArticleDOI

A dynamic subgrid‐scale eddy viscosity model

TL;DR: In this article, a new eddy viscosity model is presented which alleviates many of the drawbacks of the existing subgrid-scale stress models, such as the inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes.
Journal ArticleDOI

Turbulence statistics in fully developed channel flow at low reynolds number

TL;DR: In this article, a direct numerical simulation of a turbulent channel flow is performed, where the unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centerline velocity and channel half-width, with about 4 million grid points.
Journal ArticleDOI

Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations

TL;DR: In this paper, a numerical method for computing three-dimensional, time-dependent incompressible flows is presented based on a fractional-step, or time-splitting, scheme in conjunction with the approximate-factorization technique.

Eddies, streams, and convergence zones in turbulent flows

TL;DR: In this article, a set of objective criteria were found which describe regions in which the streamlines circulate, converge, or diverge, and form high streams of high velocity flow.
Journal ArticleDOI

A dynamic subgrid‐scale model for compressible turbulence and scalar transport

TL;DR: Germano et al. as discussed by the authors generalized the dynamic subgrid-scale (SGS) model for the large eddy simulation (LES) of compressible flows and transport of a scalar.