scispace - formally typeset
Search or ask a question
Author

Parviz Moin

Bio: Parviz Moin is an academic researcher from Stanford University. The author has contributed to research in topics: Turbulence & Large eddy simulation. The author has an hindex of 116, co-authored 473 publications receiving 60521 citations. Previous affiliations of Parviz Moin include Center for Turbulence Research & Ames Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, Wu and Moin compared the statistical properties of the turbulence in transition at Reθ ≈ 300, from individual turbulent spots, and where the spots merge (distributions of the mean velocity, Reynolds stresses, kinetic energy production, and dissipation rates, enstrophy and its components).
Abstract: Using the recent direct numerical simulations by Wu and Moin [“Transitional and turbulent boundary layer with heat transfer,” Phys. Fluids 22, 85 (2010)] of a flat-plate boundary layer with a passively heated wall, statistical properties of the turbulence in transition at Reθ ≈ 300, from individual turbulent spots, and at Reθ ≈ 500, where the spots merge (distributions of the mean velocity, Reynolds stresses, kinetic energy production, and dissipation rates, enstrophy and its components) have been compared to these statistical properties for the developed boundary layer turbulence at Reθ = 1840. When the distributions in the transitional regions are conditionally averaged so as to exclude locations and times when the flow is not turbulent, they closely resemble the distributions in the developed turbulent state at the higher Reynolds number, especially in the buffer layer. Skin friction coefficients, determined in this conditional manner at the two Reynolds numbers in the transitional flow are, of course,...

39 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the application of a derivative-free optimization technique, the surrogate management framework (SMF), for designing the shape of an airfoil trailing edge which minimizes the noise of vortex shedding.
Abstract: In this Letter we describe the application of a derivative-free optimization technique, the surrogate management framework (SMF), for designing the shape of an airfoil trailing edge which minimizes the noise of vortex shedding. Constraints on lift and drag are enforced within SMF using a filter. Several optimal shapes have been identified for the case of laminar vortex shedding with reasonable computational cost using several shape parameters, and results show a significant reduction in acoustic power. Physical mechanisms for noise reduction are discussed.

37 citations

Journal Article
TL;DR: In this article, an internal layer was found in the turbulent flow through an asymmetric planar diffuser using large-eddy simulation; they discuss five issues relevant to the internal layer: definition and identification, conditions for occurrence, connection with its outer flow, similarity with other equilibrium flows, and growth.
Abstract: We report an internal layer found in the turbulent flow through an asymmetric planar diffuser using large-eddy simulation; we discuss five issues relevant to the internal layer: definition and identification, conditions for occurrence, connection with its outer flow, similarity with other equilibrium flows, and growth. The present internal layer exists in a region with stabilized positive skin friction downstream of a sharp reduction. The streamwise pressure gradient changes suddenly from slightly favourable to strongly adverse at the diffuser throat, and relaxes in a prolonged mildly adverse region corresponding to the skin friction plateau. Development of the internal layer into the outer region is slow, in contrast to the internal layers previously identified from certain external boundary-layer flows where the sudden change in streamwise pressure gradient is from strongly adverse to mildly favourable. Signatures of the internal layer include an inflectional point in the wall-normal profiles of streamwise turbulence intensity, and a well-defined logarithmic slope in the mean streamwise velocity underneath a linear distribution extending to the core region of the diffuser. Some of these characteristics bear a certain resemblance to those existing in the C-type of Couette–Poiseuille turbulent flows. Frequency spectrum results indicate that application of strong adverse pressure gradient at the diffuser throat enhances the low-frequency content of streamwise turbulent fluctuations. Inside the internal layer, the frequency energy spectra at different streamwise locations, but with the same wall-normal coordinate, nearly collapse. Two-point correlations with streamwise, wall-normal and temporal separations were used to examine connections between fluctuations inside the internal layer and those in the core region of the diffuser where the mean streamwise velocity varies linearly with distance from the wall. Galilean decomposition of instantaneous velocity vectors reveals a string of well-defined spanwise vortices outside the internal layer. The internal layer discovered from this study provides qualified support for a conjecture advanced by Azad &

36 citations

Proceedings ArticleDOI
24 Jun 2013
TL;DR: In this paper, a large eddy simulation is used to predict the flow around the 30P/30N airfoil at several angles of attack and at Reynolds number (based on the stowed chord) of Rec = 9 · 10.
Abstract: Accurate predictions of flow around high lift devices is of interest for airframe noise predictions as well as wing design with or without active flow control. In particular, prediction of the maximum lift coefficient remains challenging using RANS solvers. We discuss how large eddy simulation can be used in this context, together with wall-modeling to reach flight Reynolds numbers. The study is focused on the flow around the McDonnellDouglas 30P/30N airfoil at several angles of attack and at Reynolds number (based on the stowed chord) of Rec = 9 · 10.

36 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a new eddy viscosity model is presented which alleviates many of the drawbacks of the existing subgrid-scale stress models, such as the inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes.
Abstract: One major drawback of the eddy viscosity subgrid‐scale stress models used in large‐eddy simulations is their inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the present work a new eddy viscosity model is presented which alleviates many of these drawbacks. The model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model is based on an algebraic identity between the subgrid‐scale stresses at two different filtered levels and the resolved turbulent stresses. The subgrid‐scale stresses obtained using the proposed model vanish in laminar flow and at a solid boundary, and have the correct asymptotic behavior in the near‐wall region of a turbulent boundary layer. The results of large‐eddy simulations of transitional and turbulent channel flow that use the proposed model are in good agreement with the direct simulation data.

6,747 citations

Journal ArticleDOI
TL;DR: An overview of the lattice Boltzmann method, a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities, is presented.
Abstract: We present an overview of the lattice Boltzmann method (LBM), a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities. The LBM is especially useful for modeling complicated boundary conditions and multiphase interfaces. Recent extensions of this method are described, including simulations of fluid turbulence, suspension flows, and reaction diffusion systems.

6,565 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose a definition of vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor, which captures the pressure minimum in a plane perpendicular to the vortex axis at high Reynolds numbers, and also accurately defines vortex cores at low Reynolds numbers.
Abstract: Considerable confusion surrounds the longstanding question of what constitutes a vortex, especially in a turbulent flow. This question, frequently misunderstood as academic, has recently acquired particular significance since coherent structures (CS) in turbulent flows are now commonly regarded as vortices. An objective definition of a vortex should permit the use of vortex dynamics concepts to educe CS, to explain formation and evolutionary dynamics of CS, to explore the role of CS in turbulence phenomena, and to develop viable turbulence models and control strategies for turbulence phenomena. We propose a definition of a vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor ${\bm {\cal S}}^2 + {\bm \Omega}^2$ are respectively the symmetric and antisymmetric parts of the velocity gradient tensor ${\bm \Delta}{\bm u}$. This definition captures the pressure minimum in a plane perpendicular to the vortex axis at high Reynolds numbers, and also accurately defines vortex cores at low Reynolds numbers, unlike a pressure-minimum criterion. We compare our definition with prior schemes/definitions using exact and numerical solutions of the Euler and Navier–Stokes equations for a variety of laminar and turbulent flows. In contrast to definitions based on the positive second invariant of ${\bm \Delta}{\bm u}$ or the complex eigenvalues of ${\bm \Delta}{\bm u}$, our definition accurately identifies the vortex core in flows where the vortex geometry is intuitively clear.

5,837 citations

Journal ArticleDOI
TL;DR: In this article, the authors present finite-difference schemes for the evaluation of first-order, second-order and higher-order derivatives yield improved representation of a range of scales and may be used on nonuniform meshes.

5,832 citations