scispace - formally typeset
Search or ask a question
Author

Parviz Moin

Bio: Parviz Moin is an academic researcher from Stanford University. The author has contributed to research in topics: Turbulence & Large eddy simulation. The author has an hindex of 116, co-authored 473 publications receiving 60521 citations. Previous affiliations of Parviz Moin include Center for Turbulence Research & Ames Research Center.


Papers
More filters
01 Jan 1993
TL;DR: In this paper, a variational formulation of the dynamic model is described that removes the inconsistency associated with taking C out of the filtering operation, however, this model is still unstable due to the negative eddy-viscosity.
Abstract: The dynamic model is a method for computing the coefficient C in Smagorinsky's model for the subgrid-scale stress tensor as a function of position from the information already contained in the resolved velocity field rather than treating it as an adjustable parameter. A variational formulation of the dynamic model is described that removes the inconsistency associated with taking C out of the filtering operation. This model, however, is still unstable due to the negative eddy-viscosity. Next, three models are presented that are mathematically consistent as well as numerically stable. The first two are applicable to homogeneous flows and flows with at least one homogeneous direction, respectively, and are, in fact, a rigorous derivation of the ad hoc expressions used by previous authors. The third model in this set can be applied to arbitrary flows, and it is stable because the C it predicts is always positive. Finally, a model involving the subgrid-scale kinetic energy is presented which attempts to model backscatter. This last model has some desirable theoretical features. However, even though it gives results in LES that are qualitatively correct, it is outperformed by the simpler constrained variational models. It is suggested that one of the constrained variational models should be used for actual LES while theoretical investigation of the kinetic energy approach should be continued in an effort to improve its predictive power and to understand more about backscatter.

29 citations

Journal ArticleDOI
TL;DR: In this article, a large-eddy simulation (LES) is coupled with a near-wall Reynolds-averaged Navier-Stokes (RANS) model that provides a target velocity for the cost function.
Abstract: Wall models for large-eddy simulation (LES) based on optimal control theory have so far been nonpredictive due to the need to prescribe a known mean velocity profile to the controller. In this study, LES is coupled with a near-wall Reynolds-averaged Navier–Stokes (RANS) model that provides a target velocity for the cost function. For the wall model to be accurate and robust, the LES and RANS must not only be tied together via the controller but directly coupled to each other through boundary conditions. The method proves to be accurate and robust over a wide range of Reynolds numbers in a plane channel flow. It is shown that the control reacts only locally in all spatial directions, justifying the current control formulation and suggesting directions for future model development. Further, instantaneous velocity fields of the coarse LES indicate that the dynamics of the near-wall flow are very dependent on the computational grid, demonstrating that a control strategy is required in addition to physical rea...

29 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have demonstrated how various vortex identification and visualization criteria perform using direct numerical simulation data from a transitional and turbulent boundary layer by Sayadi, Hamman, and Moin.
Abstract: We have demonstrated how various vortex identification and visualization criteria perform using direct numerical simulation data from a transitional and turbulent boundary layer by Sayadi, Hamman, and Moin [“Direct numerical simulation of complete transition to turbulence via h-type and k-type secondary instabilities,” Technical Report, Stanford University, CTR Annual Research Briefs, 2011]. The presence of well-known Λ vortices in the transitional region provides a well defined and yet realistic benchmark for evaluation of various criteria. We investigate the impact of changing the threshold used for iso-surface plotting.

29 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an analytical toolkit for population balance analysis in two-phase flows, including the expected -10/3 power-law exponent for the super-Hinze-scale size distribution, which suggests the emergence of different physical mechanisms during different phases of the breaking wave evolution.
Abstract: Breaking waves generate a distribution of bubble sizes that evolves over time. Knowledge of how this distribution evolves is of practical importance for maritime and climate studies. The analytical framework developed in Part 1 examined how this evolution is governed by the bubble-mass flux from large to small bubble sizes, which depends on the rate of break-up events and the distribution of child bubble sizes. These statistics are measured in Part 2 as ensemble-averaged functions of time by simulating ensembles of breaking waves, and identifying and tracking individual bubbles and their break-up events. The break-up dynamics are seen to be statistically unsteady, and two intervals with distinct characteristics were identified. In the first interval, the dissipation rate and bubble-mass flux are quasi-steady, and the theoretical analysis of Part 1 is supported by all observed statistics, including the expected -10/3 power-law exponent for the super-Hinze-scale size distribution. Strong locality is observed in the corresponding bubble-mass flux, supporting the presence of a super-Hinze-scale break-up cascade. In the second interval, the dissipation rate decays, and the bubble-mass flux increases as small- and intermediate-sized bubbles become more populous. This flux remains strongly local with cascade-like behaviour, but the dominant power-law exponent for the size distribution increases to -8/3 as small bubbles are also depleted more quickly. This suggests the emergence of different physical mechanisms during different phases of the breaking-wave evolution, although size-local break-up remains a dominant theme. Parts 1 and 2 present an analytical toolkit for population balance analysis in two-phase flows.

29 citations

Journal ArticleDOI
TL;DR: In this article, an algorithm for the identification and analysis of flow structures based on morphological operations is presented, which distils the topology of the flow field into a discrete data set and enables the time-resolved sampling of coherent flow processes across multiple scales.
Abstract: The mechanism underlying the coherent hairpin process in wall-bounded shear flows is studied. An algorithm for the identification and analysis of flow structures based on morphological operations is presented. The method distils the topology of the flow field into a discrete data set and enables the time-resolved sampling of coherent flow processes across multiple scales. Application to direct simulation data of transitional and turbulent boundary layers at moderate Reynolds number sheds light on the flow physics of the hairpin process. The analysis links the hairpin to an exponential instability which is amplified in the flow distorted by a negative perturbation in the streamwise velocity component. Linear analyses substantiate the connection to an inviscid instability mechanism of varicose type. The formation of packets of hairpins is related to a self-similar process which originates from a single patch of low-speed fluid and describes a recurrence of the dynamics that leads to the formation of an individual hairpin. Analysis of the evolution of several thousand turbulent hairpins provides a statistical characterization of the principal dynamics and yields a time-resolved average of the hairpin process. Comparisons with the transitional hairpin show qualitatively consistent trends and thus support earlier hypotheses of their equivalence. In terms of the causality of events, the results suggest that the hairpin is a manifestation of the varicose instability and as such is a consequence rather than a cause of the primary perturbations of the flow.

29 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a new eddy viscosity model is presented which alleviates many of the drawbacks of the existing subgrid-scale stress models, such as the inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes.
Abstract: One major drawback of the eddy viscosity subgrid‐scale stress models used in large‐eddy simulations is their inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the present work a new eddy viscosity model is presented which alleviates many of these drawbacks. The model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model is based on an algebraic identity between the subgrid‐scale stresses at two different filtered levels and the resolved turbulent stresses. The subgrid‐scale stresses obtained using the proposed model vanish in laminar flow and at a solid boundary, and have the correct asymptotic behavior in the near‐wall region of a turbulent boundary layer. The results of large‐eddy simulations of transitional and turbulent channel flow that use the proposed model are in good agreement with the direct simulation data.

6,747 citations

Journal ArticleDOI
TL;DR: An overview of the lattice Boltzmann method, a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities, is presented.
Abstract: We present an overview of the lattice Boltzmann method (LBM), a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities. The LBM is especially useful for modeling complicated boundary conditions and multiphase interfaces. Recent extensions of this method are described, including simulations of fluid turbulence, suspension flows, and reaction diffusion systems.

6,565 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose a definition of vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor, which captures the pressure minimum in a plane perpendicular to the vortex axis at high Reynolds numbers, and also accurately defines vortex cores at low Reynolds numbers.
Abstract: Considerable confusion surrounds the longstanding question of what constitutes a vortex, especially in a turbulent flow. This question, frequently misunderstood as academic, has recently acquired particular significance since coherent structures (CS) in turbulent flows are now commonly regarded as vortices. An objective definition of a vortex should permit the use of vortex dynamics concepts to educe CS, to explain formation and evolutionary dynamics of CS, to explore the role of CS in turbulence phenomena, and to develop viable turbulence models and control strategies for turbulence phenomena. We propose a definition of a vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor ${\bm {\cal S}}^2 + {\bm \Omega}^2$ are respectively the symmetric and antisymmetric parts of the velocity gradient tensor ${\bm \Delta}{\bm u}$. This definition captures the pressure minimum in a plane perpendicular to the vortex axis at high Reynolds numbers, and also accurately defines vortex cores at low Reynolds numbers, unlike a pressure-minimum criterion. We compare our definition with prior schemes/definitions using exact and numerical solutions of the Euler and Navier–Stokes equations for a variety of laminar and turbulent flows. In contrast to definitions based on the positive second invariant of ${\bm \Delta}{\bm u}$ or the complex eigenvalues of ${\bm \Delta}{\bm u}$, our definition accurately identifies the vortex core in flows where the vortex geometry is intuitively clear.

5,837 citations

Journal ArticleDOI
TL;DR: In this article, the authors present finite-difference schemes for the evaluation of first-order, second-order and higher-order derivatives yield improved representation of a range of scales and may be used on nonuniform meshes.

5,832 citations