scispace - formally typeset
Search or ask a question
Author

Parviz Moin

Bio: Parviz Moin is an academic researcher from Stanford University. The author has contributed to research in topics: Turbulence & Large eddy simulation. The author has an hindex of 116, co-authored 473 publications receiving 60521 citations. Previous affiliations of Parviz Moin include Center for Turbulence Research & Ames Research Center.


Papers
More filters
01 Nov 1996

4 citations

01 Dec 1987
TL;DR: In this paper, the Reynolds stresses and the dissipation rate of the turbulence kinetic energy are computed using direct simulation data of a turbulent channel flow using a closed-loop model, where the budget data reveal that all the terms in the budget become important close to the wall.
Abstract: The budgets for the Reynolds stresses and for the dissipation rate of the turbulence kinetic energy are computed using direct simulation data of a turbulent channel flow. The budget data reveal that all the terms in the budget become important close to the wall. For inhomogeneous pressure boundary conditions, the pressure-strain term is split into a return term, a rapid term, and a Stokes term. The Stokes term is important close to the wall. The rapid and return terms play different roles depending on the component of the term. A split of the velocity pressure-gradient term into a redistributive term and a diffusion term is proposed, which should be simpler to model. The budget data is used to test existing closure models for the pressure-strain term, the dissipation rate, and the transport rate. In general, further work is needed to improve the models.

4 citations

Journal ArticleDOI
TL;DR: In this article, recent simulations of transition to turbulence in compressible (M 1 = 0.2), zero-pressure-gradient flatplate boundary layers triggered by fundamental (Klebanoff K-type) and subharmonic (Herbert H-type), secondary instabilities of TollmienSchlichting waves are highlighted.
Abstract: In this fluid dynamics video, recent simulations of transition to turbulence in compressible (M1 = 0.2), zero-pressure-gradient flatplate boundary layers triggered by fundamental (Klebanoff K-type) and subharmonic (Herbert H-type) secondary instabilities of TollmienSchlichting waves are highlighted.

4 citations

Proceedings ArticleDOI
01 Jan 2003
TL;DR: In this article, the dynamics of different bead-spring models in a turbulent channel flow are compared. And the results for the mean extension and the mean stresses are obtained for different extensibility parameters.
Abstract: The dynamics of different bead-spring models is investigated in a turbulent channel flow. In particular, the FENE, the FENE-P and the FENE multichain models are compared. In the case of the FENE-P model, both the Brownian Dynamics and the constitutive equations are used. It is shown that the different models produce qualitatively similar results for the mean extension and the mean stresses. This qualitative behaviour is also reproduced for different extensibility parameters. It is also found that the action of polymers is confined in the near wall region where the polymers are mainly oriented in the streamwise direction.Copyright © 2003 by ASME

4 citations

Journal ArticleDOI
TL;DR: In this article, a linear global mode analysis of the non-parallel jet mean flow is performed using a filter in the wavenumber-frequency domain, showing that the supersonic components of pressure and radial velocity fluctuation show peaks within the jet and show the U8j scaling behavior consistent with the far-field radiated noise levels.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a new eddy viscosity model is presented which alleviates many of the drawbacks of the existing subgrid-scale stress models, such as the inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes.
Abstract: One major drawback of the eddy viscosity subgrid‐scale stress models used in large‐eddy simulations is their inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the present work a new eddy viscosity model is presented which alleviates many of these drawbacks. The model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model is based on an algebraic identity between the subgrid‐scale stresses at two different filtered levels and the resolved turbulent stresses. The subgrid‐scale stresses obtained using the proposed model vanish in laminar flow and at a solid boundary, and have the correct asymptotic behavior in the near‐wall region of a turbulent boundary layer. The results of large‐eddy simulations of transitional and turbulent channel flow that use the proposed model are in good agreement with the direct simulation data.

6,747 citations

Journal ArticleDOI
TL;DR: An overview of the lattice Boltzmann method, a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities, is presented.
Abstract: We present an overview of the lattice Boltzmann method (LBM), a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities. The LBM is especially useful for modeling complicated boundary conditions and multiphase interfaces. Recent extensions of this method are described, including simulations of fluid turbulence, suspension flows, and reaction diffusion systems.

6,565 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose a definition of vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor, which captures the pressure minimum in a plane perpendicular to the vortex axis at high Reynolds numbers, and also accurately defines vortex cores at low Reynolds numbers.
Abstract: Considerable confusion surrounds the longstanding question of what constitutes a vortex, especially in a turbulent flow. This question, frequently misunderstood as academic, has recently acquired particular significance since coherent structures (CS) in turbulent flows are now commonly regarded as vortices. An objective definition of a vortex should permit the use of vortex dynamics concepts to educe CS, to explain formation and evolutionary dynamics of CS, to explore the role of CS in turbulence phenomena, and to develop viable turbulence models and control strategies for turbulence phenomena. We propose a definition of a vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor ${\bm {\cal S}}^2 + {\bm \Omega}^2$ are respectively the symmetric and antisymmetric parts of the velocity gradient tensor ${\bm \Delta}{\bm u}$. This definition captures the pressure minimum in a plane perpendicular to the vortex axis at high Reynolds numbers, and also accurately defines vortex cores at low Reynolds numbers, unlike a pressure-minimum criterion. We compare our definition with prior schemes/definitions using exact and numerical solutions of the Euler and Navier–Stokes equations for a variety of laminar and turbulent flows. In contrast to definitions based on the positive second invariant of ${\bm \Delta}{\bm u}$ or the complex eigenvalues of ${\bm \Delta}{\bm u}$, our definition accurately identifies the vortex core in flows where the vortex geometry is intuitively clear.

5,837 citations

Journal ArticleDOI
TL;DR: In this article, the authors present finite-difference schemes for the evaluation of first-order, second-order and higher-order derivatives yield improved representation of a range of scales and may be used on nonuniform meshes.

5,832 citations