scispace - formally typeset
Search or ask a question
Author

Pascal Rousseau

Bio: Pascal Rousseau is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Laser & Electron. The author has an hindex of 22, co-authored 58 publications receiving 3164 citations. Previous affiliations of Pascal Rousseau include University of Michigan & École Polytechnique.


Papers
More filters
Journal ArticleDOI
TL;DR: To the knowledge, this is the first multi-100TW-scale laser at 0.1 Hz repetition rate and booster amplifying stage to the 50-TW-Ti:sapphire laser (HERCULES).
Abstract: We demonstrate the highest intensity - 300 TW laser by developing booster amplifying stage to the 50-TW-Ti:sapphire laser (HERCULES). To our knowledge this is the first multi-100TW-scale laser at 0.1 Hz repetition rate.

667 citations

Journal ArticleDOI
TL;DR: In this paper, a record peak intensity of 0.7×1022 W/cm2 was achieved by focusing a 45-TW laser beam with an f/0.6 off-axis paraboloid.
Abstract: We generated a record peak intensity of 0.7×1022 W/cm2 by focusing a 45-TW laser beam with an f/0.6 off-axis paraboloid. The aberrations of the paraboloid and the low-energy reference laser beam were measured and corrected, and a focal spot size of 0.8 µm was achieved. It is shown that the peak intensity can be increased to 1.0×1022 W/cm2 by correction of the wave front of a 45-TW beam relative to the reference beam. The phase and amplitude measurement provides for an efficient full characterization of the focal field.

350 citations

Proceedings Article
21 May 1995
TL;DR: In this paper, a novel aberration-free pulse stretcher design is presented, which permits the stretching of a 30-fs pulse to 300 ps and recompression to a duration of 33 fs, limited by the spectral clipping.
Abstract: A novel aberration-free pulse stretcher design is presented. This system permits the stretching of a 30-fs pulse to 300 ps and recompression to a duration of 33 fs, limited by the spectral clipping.

246 citations

Journal ArticleDOI
TL;DR: A novel aberration-free pulse stretcher design that permits the stretching of a 30-fs pulse to 300 ps and recompression to a duration of 33 fs, limited by the spectral clipping.
Abstract: A novel aberration-free pulse stretcher design is presented. This system permits the stretching of a 30-fs pulse to 300 ps and recompression to a duration of 33 fs, limited by the spectral clipping.

225 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discuss the impact of these pulses on high-field physics.
Abstract: The rise time of intense radiation determines the maximum field strength atoms can be exposed to before their polarizability dramatically drops due to the detachment of an outer electron. Recent progress in ultrafast optics has allowed the generation of ultraintense light pulses comprising merely a few field oscillation cycles. The arising intensity gradient allows electrons to survive in their bound atomic state up to external field strengths many times higher than the binding Coulomb field and gives rise to ionization rates comparable to the light frequency, resulting in a significant extension of the frontiers of nonlinear optics and (nonrelativistic) high-field physics. Implications include the generation of coherent harmonic radiation up to kiloelectronvolt photon energies and control of the atomic dipole moment on a subfemtosecond $(1{\mathrm{f}\mathrm{s}=10}^{\mathrm{\ensuremath{-}}15}\mathrm{}\mathrm{s})$ time scale. This review presents the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discusses the impact of these pulses on high-field physics. Particular emphasis is placed on high-order harmonic emission and single subfemtosecond extreme ultraviolet/x-ray pulse generation. These as well as other strong-field processes are governed directly by the electric-field evolution, and hence their full control requires access to the (absolute) phase of the light carrier. We shall discuss routes to its determination and control, which will, for the first time, allow access to the electromagnetic fields in light waves and control of high-field interactions with never-before-achieved precision.

2,547 citations

Journal ArticleDOI
TL;DR: In this paper, a number of consequences of relativistic-strength optical fields are surveyed, including wakefield generation, a relativistically version of optical rectification, in which longitudinal field effects could be as large as the transverse ones.
Abstract: The advent of ultraintense laser pulses generated by the technique of chirped pulse amplification (CPA) along with the development of high-fluence laser materials has opened up an entirely new field of optics. The electromagnetic field intensities produced by these techniques, in excess of ${10}^{18}\phantom{\rule{0.3em}{0ex}}\mathrm{W}∕{\mathrm{cm}}^{2}$, lead to relativistic electron motion in the laser field. The CPA method is reviewed and the future growth of laser technique is discussed, including the prospect of generating the ultimate power of a zettawatt. A number of consequences of relativistic-strength optical fields are surveyed. In contrast to the nonrelativistic regime, these laser fields are capable of moving matter more effectively, including motion in the direction of laser propagation. One of the consequences of this is wakefield generation, a relativistic version of optical rectification, in which longitudinal field effects could be as large as the transverse ones. In addition to this, other effects may occur, including relativistic focusing, relativistic transparency, nonlinear modulation and multiple harmonic generation, and strong coupling to matter and other fields (such as high-frequency radiation). A proper utilization of these phenomena and effects leads to the new technology of relativistic engineering, in which light-matter interactions in the relativistic regime drives the development of laser-driven accelerator science. A number of significant applications are reviewed, including the fast ignition of an inertially confined fusion target by short-pulsed laser energy and potential sources of energetic particles (electrons, protons, other ions, positrons, pions, etc.). The coupling of an intense laser field to matter also has implications for the study of the highest energies in astrophysics, such as ultrahigh-energy cosmic rays, with energies in excess of ${10}^{20}\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$. The laser fields can be so intense as to make the accelerating field large enough for general relativistic effects (via the equivalence principle) to be examined in the laboratory. It will also enable one to access the nonlinear regime of quantum electrodynamics, where the effects of radiative damping are no longer negligible. Furthermore, when the fields are close to the Schwinger value, the vacuum can behave like a nonlinear medium in much the same way as ordinary dielectric matter expanded to laser radiation in the early days of laser research.

1,459 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent investigations on high-energy processes within the realm of relativistic quantum dynamics, quantum electrodynamics, and nuclear and particle physics, occurring in extremely intense laser fields is presented.
Abstract: The field of laser-matter interaction traditionally deals with the response of atoms, molecules, and plasmas to an external light wave. However, the recent sustained technological progress is opening up the possibility of employing intense laser radiation to trigger or substantially influence physical processes beyond atomic-physics energy scales. Available optical laser intensities exceeding ${10}^{22}\text{ }\text{ }\mathrm{W}/{\mathrm{cm}}^{2}$ can push the fundamental light-electron interaction to the extreme limit where radiation-reaction effects dominate the electron dynamics, can shed light on the structure of the quantum vacuum, and can trigger the creation of particles such as electrons, muons, and pions and their corresponding antiparticles. Also, novel sources of intense coherent high-energy photons and laser-based particle colliders can pave the way to nuclear quantum optics and may even allow for the potential discovery of new particles beyond the standard model. These are the main topics of this article, which is devoted to a review of recent investigations on high-energy processes within the realm of relativistic quantum dynamics, quantum electrodynamics, and nuclear and particle physics, occurring in extremely intense laser fields.

1,394 citations

Journal ArticleDOI
TL;DR: An overview of the state of the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives are given in this article. But the main features observed in the experiments, the observed scaling with laser and plasma parameters, and the main models used both to interpret experimental data and to suggest new research directions are described.
Abstract: Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the applicative potential and in the perspective to investigate novel regimes as available laser intensities will be increasing. Experiments have demonstrated, over a wide range of laser and target parameters, the generation of multi-MeV proton and ion beams with unique properties such as ultrashort duration, high brilliance, and low emittance. An overview is given of the state of the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives. The main features observed in the experiments, the observed scaling with laser and plasma parameters, and the main models used both to interpret experimental data and to suggest new research directions are described.

1,221 citations