scispace - formally typeset
Search or ask a question
Author

Pascale Gaudet

Bio: Pascale Gaudet is an academic researcher from Swiss Institute of Bioinformatics. The author has contributed to research in topics: Dictyostelium & NeXtProt. The author has an hindex of 40, co-authored 98 publications receiving 12856 citations. Previous affiliations of Pascale Gaudet include Concordia University & University of Manchester.


Papers
More filters
Journal ArticleDOI
Midori A. Harris, Jennifer I. Clark1, Ireland A1, Jane Lomax1, Michael Ashburner1, Michael Ashburner2, R. Foulger2, R. Foulger1, Karen Eilbeck1, Karen Eilbeck3, Suzanna E. Lewis3, Suzanna E. Lewis1, B. Marshall3, B. Marshall1, Christopher J. Mungall3, Christopher J. Mungall1, J. Richter1, J. Richter3, Gerald M. Rubin3, Gerald M. Rubin1, Judith A. Blake1, Carol J. Bult1, Dolan M1, Drabkin H1, Janan T. Eppig1, Hill Dp1, L. Ni1, Ringwald M1, Rama Balakrishnan4, Rama Balakrishnan1, J. M. Cherry4, J. M. Cherry1, Karen R. Christie4, Karen R. Christie1, Maria C. Costanzo1, Maria C. Costanzo4, Selina S. Dwight1, Selina S. Dwight4, Stacia R. Engel4, Stacia R. Engel1, Dianna G. Fisk1, Dianna G. Fisk4, Jodi E. Hirschman4, Jodi E. Hirschman1, Eurie L. Hong4, Eurie L. Hong1, Robert S. Nash1, Robert S. Nash4, Anand Sethuraman1, Anand Sethuraman4, Chandra L. Theesfeld1, Chandra L. Theesfeld4, David Botstein5, David Botstein1, Kara Dolinski5, Kara Dolinski1, Becket Feierbach1, Becket Feierbach5, Tanya Z. Berardini1, Tanya Z. Berardini6, S. Mundodi6, S. Mundodi1, Seung Y. Rhee6, Seung Y. Rhee1, Rolf Apweiler1, Daniel Barrell1, Camon E1, E. Dimmer1, Lee1, Rex L. Chisholm, Pascale Gaudet1, Pascale Gaudet7, Warren A. Kibbe1, Warren A. Kibbe7, Ranjana Kishore8, Ranjana Kishore1, Erich M. Schwarz1, Erich M. Schwarz8, Paul W. Sternberg1, Paul W. Sternberg8, M. Gwinn1, Hannick L1, Wortman J1, Matthew Berriman1, Matthew Berriman9, Wood9, Wood1, de la Cruz N1, de la Cruz N10, Peter J. Tonellato10, Peter J. Tonellato1, Pankaj Jaiswal1, Pankaj Jaiswal11, Seigfried T1, Seigfried T12, White R13, White R1 
TL;DR: The Gene Ontology (GO) project as discussed by the authors provides structured, controlled vocabularies and classifications that cover several domains of molecular and cellular biology and are freely available for community use in the annotation of genes, gene products and sequences.
Abstract: The Gene Ontology (GO) project (http://www.geneontology.org/) provides structured, controlled vocabularies and classifications that cover several domains of molecular and cellular biology and are freely available for community use in the annotation of genes, gene products and sequences. Many model organism databases and genome annotation groups use the GO and contribute their annotation sets to the GO resource. The GO database integrates the vocabularies and contributed annotations and provides full access to this information in several formats. Members of the GO Consortium continually work collectively, involving outside experts as needed, to expand and update the GO vocabularies. The GO Web resource also provides access to extensive documentation about the GO project and links to applications that use GO data for functional analyses.

3,565 citations

Journal ArticleDOI
Seth Carbon1, Eric Douglass1, Nathan Dunn1, Benjamin M. Good1  +189 moreInstitutions (19)
TL;DR: GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models.
Abstract: The Gene Ontology resource (GO; http://geneontology.org) provides structured, computable knowledge regarding the functions of genes and gene products. Founded in 1998, GO has become widely adopted in the life sciences, and its contents are under continual improvement, both in quantity and in quality. Here, we report the major developments of the GO resource during the past two years. Each monthly release of the GO resource is now packaged and given a unique identifier (DOI), enabling GO-based analyses on a specific release to be reproduced in the future. The molecular function ontology has been refactored to better represent the overall activities of gene products, with a focus on transcription regulator activities. Quality assurance efforts have been ramped up to address potentially out-of-date or inaccurate annotations. New evidence codes for high-throughput experiments now enable users to filter out annotations obtained from these sources. GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models. We also provide the ‘GO ribbon’ widget for visualizing GO annotations to a gene; the widget can be easily embedded in any web page.

2,138 citations

Journal ArticleDOI
TL;DR: A historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations is made available to maintain consistency with other ontologies.
Abstract: The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations.

1,988 citations

Journal ArticleDOI
Ludwig Eichinger1, Justin A. Pachebat1, Justin A. Pachebat2, Gernot Glöckner, Marie-Adèle Rajandream3, Richard Sucgang4, Matthew Berriman3, J. Song4, Rolf Olsen5, Karol Szafranski, Qikai Xu4, Budi Tunggal1, Sarah K. Kummerfeld2, Martin Madera2, Bernard Anri Konfortov2, Francisco Rivero1, Alan T. Bankier2, Rüdiger Lehmann, N. Hamlin3, Robert L. Davies3, Pascale Gaudet6, Petra Fey6, Karen E Pilcher6, Guokai Chen4, David L. Saunders3, Erica Sodergren4, P. Davis3, Arnaud Kerhornou3, X. Nie4, Neil Hall3, Christophe Anjard5, Lisa Hemphill4, Nathalie Bason3, Patrick Farbrother1, Brian A. Desany4, Eric M. Just6, Takahiro Morio7, René Rost8, Carol Churcher3, J. Cooper3, Stephen F. Haydock9, N. van Driessche4, Ann Cronin3, Ian Goodhead3, Donna M. Muzny4, T. Mourier3, Arnab Pain3, Mingyang Lu4, D. Harper3, R. Lindsay4, Heidi Hauser3, Kylie R. James3, M. Quiles4, M. Madan Babu2, Tsuneyuki Saito10, Carmen Buchrieser11, A. Wardroper2, A. Wardroper12, Marius Felder, M. Thangavelu, D. Johnson3, Andrew J Knights3, H. Loulseged4, Karen Mungall3, Karen Oliver3, Claire Price3, Michael A. Quail3, Hideko Urushihara7, Judith Hernandez4, Ester Rabbinowitsch3, David Steffen4, Mandy Sanders3, Jun Ma4, Yuji Kohara13, Sarah Sharp3, Mark Simmonds3, S. Spiegler3, Adrian Tivey3, Sumio Sugano14, Brian White3, Danielle Walker3, John Woodward3, Thomas Winckler, Yoshiaki Tanaka7, Gad Shaulsky4, Michael Schleicher8, George M. Weinstock4, André Rosenthal, Edward C. Cox15, Rex L. Chisholm6, Richard A. Gibbs4, William F. Loomis5, Matthias Platzer, Robert R. Kay2, Jeffrey G. Williams16, Paul H. Dear2, Angelika A. Noegel1, Bart Barrell3, Adam Kuspa4 
05 May 2005-Nature
TL;DR: A proteome-based phylogeny shows that the amoebozoa diverged from the animal–fungal lineage after the plant–animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
Abstract: The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.

1,289 citations

Journal ArticleDOI
Midori A. Harris, Jennifer I. Deegan, Amelia Ireland, Jane Lomax, Michael Ashburner1, Susan Tweedie1, Seth Carbon2, Suzanna E. Lewis2, Christopher J. Mungall2, John Day Richter2, Karen Eilbeck, Judith A. Blake, Carol J. Bult, Alexander D. Diehl, Mary E. Dolan, Harold J. Drabkin, Janan T. Eppig, David P. Hill, Ni Li, Martin Ringwald, Rama Balakrishnan3, Gail Binkley3, J. Michael Cherry3, Karen R. Christie3, Maria C. Costanzo3, Qing Dong3, Stacia R. Engel3, Dianna G. Fisk3, Jodi E. Hirschman3, Benjamin C. Hitz3, Eurie L. Hong3, Cynthia J. Krieger3, Stuart R. Miyasato3, Robert S. Nash3, Julie Park3, Marek S. Skrzypek3, Shuai Weng3, Edith D. Wong3, Kathy K. Zhu3, David Botstein4, Kara Dolinski4, Michael S. Livstone4, Rose Oughtred4, Tanya Z. Berardini5, Li Donghui5, Seung Y. Rhee5, Rolf Apweiler6, Daniel Barrell6, Evelyn Camon6, Emily Dimmer6, Rachael P. Huntley, Nicola Mulder, Varsha K. Khodiyar, Ruth C. Lovering, Sue Povey, Rex L. Chisholm, Petra Fey, Pascale Gaudet, Warren A. Kibbe, Ranjana Kishore, Erich M. Schwarz, Paul W. Sternberg, Kimberly Van Auken, Michelle G. Giglio, Linda Hannick, Jennifer R. Wortman, Martin Aslett, Matthew Berriman, Valerie Wood, Howard J. Jacob, Stan Laulederkind, Victoria Petri, Mary Shimoyama, Jennifer L. Smith, Simon N. Twigger, Pankaj Jaiswal, Trent E. Seigfried, Doug Howe, Monte Westerfield, Candace Collmer, Trudy Torto Alalibo, Erika Feltrin, Giorgio Valle, Susan Bromberg, Shane C. Burgess, Fiona M. McCarthy 
TL;DR: The GO Consortium has launched a focused effort to provide comprehensive and detailed annotation of orthologous genes across a number of ‘reference’ genomes, including human and several key model organisms.
Abstract: The Gene Ontology (GO) project (http://www.geneontology.org) provides a set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences (also see http://www.sequenceontology.org/). The ontologies have been extended and refined for several biological areas, and improvements to the structure of the ontologies have been implemented. To improve the quantity and quality of gene product annotations available from its public repository, the GO Consortium has launched a focused effort to provide comprehensive and detailed annotation of orthologous genes across a number of reference genomes, including human and several key model organisms. Software developments include two releases of the ontology-editing tool OBO-Edit, and improvements to the AmiGO browser interface.

726 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2015-Science
TL;DR: In this paper, a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level.
Abstract: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

9,745 citations

Journal ArticleDOI
TL;DR: H hierarchical and self-consistent orthology annotations are introduced for all interacting proteins, grouping the proteins into families at various levels of phylogenetic resolution in the STRING database.
Abstract: The many functional partnerships and interactions that occur between proteins are at the core of cellular processing and their systematic characterization helps to provide context in molecular systems biology. However, known and predicted interactions are scattered over multiple resources, and the available data exhibit notable differences in terms of quality and completeness. The STRING database (http://string-db.org) aims to provide a critical assessment and integration of protein-protein interactions, including direct (physical) as well as indirect (functional) associations. The new version 10.0 of STRING covers more than 2000 organisms, which has necessitated novel, scalable algorithms for transferring interaction information between organisms. For this purpose, we have introduced hierarchical and self-consistent orthology annotations for all interacting proteins, grouping the proteins into families at various levels of phylogenetic resolution. Further improvements in version 10.0 include a completely redesigned prediction pipeline for inferring protein-protein associations from co-expression data, an API interface for the R computing environment and improved statistical analysis for enrichment tests in user-provided networks.

8,224 citations

Journal ArticleDOI
TL;DR: The FAIR Data Principles as mentioned in this paper are a set of data reuse principles that focus on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals.
Abstract: There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.

7,602 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations