scispace - formally typeset
Search or ask a question
Author

Pasquale Coscia

Bio: Pasquale Coscia is an academic researcher from University of Padua. The author has contributed to research in topics: Computer science & Anticipation (artificial intelligence). The author has an hindex of 6, co-authored 16 publications receiving 166 citations. Previous affiliations of Pasquale Coscia include Seconda Università degli Studi di Napoli.

Papers
More filters
Journal ArticleDOI
TL;DR: An unsupervised procedure to automatically extract a graph-based model of commercial maritime traffic routes from historical Automatic Identification System (AIS) data, suitable to be integrated at any level of a JDL system is proposed.
Abstract: We propose an unsupervised procedure to automatically extract a graph-based model of commercial maritime traffic routes from historical Automatic Identification System (AIS) data. In the proposed representation, the main elements of maritime traffic patterns, such as maneuvering regions and sea-lanes, are represented, respectively, with graph vertices and edges. Vessel motion dynamics are defined by multiple Ornstein–Uhlenbeck processes with different long-run mean parameters, which in our approach can be estimated with a change detection procedure based on Page's test, aimed to reveal the spatial points representative of velocity changes. A density-based clustering algorithm is then applied to aggregate the detected changes into groups of similar elements and reject outliers. To validate the proposed graph-based representation of the maritime traffic, two performance criteria are tested against a real-world trajectory dataset collected off the Iberian Coast and the English Channel. Results show the effectiveness of the proposed approach, which is suitable to be integrated at any level of a JDL system.

66 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: In this paper, an LSTM-based model is proposed to predict human trajectories in urban environments. But the model is not suitable for modeling paths unaware of social interactions or context information, which is insufficient to correctly predict future positions.
Abstract: Mimicking human ability to forecast future positions or interpret complex interactions in urban scenarios, such as streets, shopping malls or squares, is essential to develop socially compliant robots or self-driving cars. Autonomous systems may gain advantage on anticipating human motion to avoid collisions or to naturally behave alongside people. To foresee plausible trajectories, we construct an LSTM (long short-term memory)-based model considering three fundamental factors: people interactions, past observations in terms of previously crossed areas and semantics of surrounding space. Our model encompasses several pooling mechanisms to join the above elements defining multiple tensors, namely social, navigation and semantic tensors. The network is tested in unstructured environments where complex paths emerge according to both internal (intentions) and external (other people, not accessible areas) motivations. As demonstrated, modeling paths unaware of social interactions or context information, is insufficient to correctly predict future positions. Experimental results corroborate the effectiveness of the proposed framework in comparison to LSTM-based models for human path prediction.

63 citations

Journal ArticleDOI
TL;DR: This work focuses on a typical urban human-scene where it aims at predicting an agent's behavior using a stochastic model, fuse the various factors that would contribute to a human motion in different contexts and provides a statistical smooth prediction towards the most likely areas.

41 citations

Posted Content
TL;DR: A multi-modal framework based on long short-term memory networks to summarize past observations and make predictions at different time steps is implemented and shows that label smoothing systematically improves performance of state-of-the-art models for action anticipation.
Abstract: Human capability to anticipate near future from visual observations and non-verbal cues is essential for developing intelligent systems that need to interact with people. Several research areas, such as human-robot interaction (HRI), assisted living or autonomous driving need to foresee future events to avoid crashes or help people. Egocentric scenarios are classic examples where action anticipation is applied due to their numerous applications. Such challenging task demands to capture and model domain's hidden structure to reduce prediction uncertainty. Since multiple actions may equally occur in the future, we treat action anticipation as a multi-label problem with missing labels extending the concept of label smoothing. This idea resembles the knowledge distillation process since useful information is injected into the model during training. We implement a multi-modal framework based on long short-term memory (LSTM) networks to summarize past observations and make predictions at different time steps. We perform extensive experiments on EPIC-Kitchens and EGTEA Gaze+ datasets including more than 2500 and 100 action classes, respectively. The experiments show that label smoothing systematically improves performance of state-of-the-art models for action anticipation.

23 citations

Journal ArticleDOI
TL;DR: A new generative model for multi-future trajectory prediction based on Conditional Variational Recurrent Neural Networks (C-VRNNs) is proposed, which operates step-by-step, generating more refined and accurate predictions.

21 citations


Cited by
More filters
Proceedings ArticleDOI
29 Mar 2018
TL;DR: A recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people, and outperforms prior work in terms of accuracy, variety, collision avoidance, and computational complexity.
Abstract: Understanding human motion behavior is critical for autonomous moving platforms (like self-driving cars and social robots) if they are to navigate human-centric environments. This is challenging because human motion is inherently multimodal: given a history of human motion paths, there are many socially plausible ways that people could move in the future. We tackle this problem by combining tools from sequence prediction and generative adversarial networks: a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people. We predict socially plausible futures by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss. Through experiments on several datasets we demonstrate that our approach outperforms prior work in terms of accuracy, variety, collision avoidance, and computational complexity.

1,461 citations

Journal ArticleDOI
TL;DR: In this article, the ability of intelligent autonomous systems to perceive, understand, and anticipate human behavior becomes increasingly important in a growing number of intelligent systems in human environments, and the ability to do so is discussed.
Abstract: With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand, and anticipate human behavior becomes increasingly important. Spec...

547 citations

Posted Content
TL;DR: In this paper, a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people, and predicts socially plausible future by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss.
Abstract: Understanding human motion behavior is critical for autonomous moving platforms (like self-driving cars and social robots) if they are to navigate human-centric environments. This is challenging because human motion is inherently multimodal: given a history of human motion paths, there are many socially plausible ways that people could move in the future. We tackle this problem by combining tools from sequence prediction and generative adversarial networks: a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people. We predict socially plausible futures by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss. Through experiments on several datasets we demonstrate that our approach outperforms prior work in terms of accuracy, variety, collision avoidance, and computational complexity.

513 citations

Journal ArticleDOI
TL;DR: A survey of human motion trajectory prediction can be found in this article, where the authors provide an overview of the existing datasets and performance metrics and discuss limitations of the state-of-the-art and outline directions for further research.
Abstract: With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.

252 citations

Journal ArticleDOI
TL;DR: This work presents an in-depth analysis of existing deep learning based methods for modelling social interactions, and proposes a simple yet powerful method for effectively capturing these social interactions.
Abstract: Since the past few decades, human trajectory forecasting has been a field of active research owing to its numerous real-world applications: evacuation situation analysis, deployment of intelligent transport systems, traffic operations, to name a few. In this work, we cast the problem of human trajectory forecasting as learning a representation of human social interactions. Early works handcrafted this representation based on domain knowledge. However, social interactions in crowded environments are not only diverse but often subtle. Recently, deep learning methods have outperformed their handcrafted counterparts, as they learn about human-human interactions in a more generic data-driven fashion. In this work, we present an in-depth analysis of existing deep learning-based methods for modelling social interactions. We propose two domain-knowledge inspired data-driven methods to effectively capture these social interactions. To objectively compare the performance of these interaction-based forecasting models, we develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting. We propose novel performance metrics that evaluate the ability of a model to output socially acceptable trajectories. Experiments on TrajNet++ validate the need for our proposed metrics, and our method outperforms competitive baselines on both real-world and synthetic datasets.

108 citations