scispace - formally typeset
Search or ask a question
Author

Patrice Mégret

Bio: Patrice Mégret is an academic researcher from University of Mons. The author has contributed to research in topics: Fiber Bragg grating & Optical fiber. The author has an hindex of 40, co-authored 460 publications receiving 6259 citations. Previous affiliations of Patrice Mégret include Faculté polytechnique de Mons & Carleton University.


Papers
More filters
Journal ArticleDOI
23 Apr 2014-Sensors
TL;DR: The main challenges arising from the use of FBGs in composite materials are reviewed, with a focus on issues related to temperature-strain discrimination, demodulation of the amplitude spectrum during and after the curing process as well as connection between the embedded optical fibers and the surroundings.
Abstract: Nowadays, smart composite materials embed miniaturized sensors for structural health monitoring (SHM) in order to mitigate the risk of failure due to an overload or to unwanted inhomogeneity resulting from the fabrication process. Optical fiber sensors, and more particularly fiber Bragg grating (FBG) sensors, outperform traditional sensor technologies, as they are lightweight, small in size and offer convenient multiplexing capabilities with remote operation. They have thus been extensively associated to composite materials to study their behavior for further SHM purposes. This paper reviews the main challenges arising from the use of FBGs in composite materials. The focus will be made on issues related to temperature-strain discrimination, demodulation of the amplitude spectrum during and after the curing process as well as connection between the embedded optical fibers and the surroundings. The main strategies developed in each of these three topics will be summarized and compared, demonstrating the large progress that has been made in this field in the past few years.

380 citations

Journal ArticleDOI
TL;DR: Vertical-cavity surface-emitting lasers subjected to weak polarization-insensitive optical feedback are studied experimentally and theoretically and it is found that the feedback induces random anticorrelated hopping between the two orthogonal linearly polarized modes.
Abstract: Vertical-cavity surface-emitting lasers subjected to weak polarization-insensitive optical feedback are studied experimentally and theoretically. We find that the feedback induces random anticorrelated hopping between the two orthogonal linearly polarized modes. This polarization mode hopping is accompanied by rapid anticorrelated oscillations in the linearly polarized intensities at the external-cavity frequency. The study of a simple stochastic delay differential equation suggests that these oscillations generated by the delay are typical of any hopping phenomenon between states.

132 citations

Journal ArticleDOI
TL;DR: In this article, a demodulation technique is presented in order to measure the surrounding refractive index in the range 1-1.45 by means of a weakly tilted fiber Bragg grating.
Abstract: In this letter, a demodulation technique is presented in order to measure the surrounding refractive index in the range 1-1.45 by means of a weakly tilted fiber Bragg grating. This technique is based on the global monitoring of the cladding modes in the transmitted spectrum and on the computation of two statistical parameters. We report a resolution of 210/sup -4/ in terms of the refractive index as well as a temperature-insensitive behavior.

120 citations

Journal ArticleDOI
TL;DR: An unprecedented limit of detection (LOD) as low as 2 pM is reported and an immunosensing experiment is realized with human transferrin to assess both the reversibility and the robustness of the SPR-TFBG biosensors and to confirm their high sensitivity.

104 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Synchronization of chaos refers to a process where two chaotic systems adjust a given property of their motion to a common behavior due to a coupling or to a forcing (periodical or noisy) as discussed by the authors.

2,266 citations

Journal ArticleDOI
TL;DR: In this article, a carbon fiber reinforced plastic (CFRP) composite is used for Fused Deposition Modeling (FDM) of thermoplastic matrix CFRP composites.
Abstract: Additive manufacturing (AM) technologies have been successfully applied in various applications. Fused deposition modeling (FDM), one of the most popular AM techniques, is the most widely used method for fabricating thermoplastic parts those are mainly used as rapid prototypes for functional testing with advantages of low cost, minimal wastage, and ease of material change. Due to the intrinsically limited mechanical properties of pure thermoplastic materials, there is a critical need to improve mechanical properties for FDM-fabricated pure thermoplastic parts. One of the possible methods is adding reinforced materials (such as carbon fibers) into plastic materials to form thermoplastic matrix carbon fiber reinforced plastic (CFRP) composites those could be directly used in the actual application areas, such as aerospace, automotive, and wind energy. This paper is going to present FDM of thermoplastic matrix CFRP composites and test if adding carbon fiber (different content and length) can improve the mechanical properties of FDM-fabricated parts. The CFRP feedstock filaments were fabricated from plastic pellets and carbon fiber powders for FDM process. After FDM fabrication, effects on the tensile properties (including tensile strength, Young's modulus, toughness, yield strength, and ductility) and flexural properties (including flexural stress, flexural modulus, flexural toughness, and flexural yield strength) of specimens were experimentally investigated. In order to explore the parts fracture reasons during tensile and flexural tests, fracture interface of CFRP composite specimens after tensile testing and flexural testing was observed and analyzed using SEM micrograph.

1,133 citations

Journal ArticleDOI
16 Jul 2012-Sensors
TL;DR: This paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches.
Abstract: Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches.

1,018 citations

Journal ArticleDOI
26 Jun 2012-Sensors
TL;DR: A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.
Abstract: Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

1,011 citations