scispace - formally typeset
Search or ask a question
Author

Patricia C. Cogswell

Bio: Patricia C. Cogswell is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Regulation of gene expression & Transcription factor. The author has an hindex of 27, co-authored 29 publications receiving 6849 citations.

Papers
More filters
Journal ArticleDOI
13 Oct 1995-Science
TL;DR: It is shown that the synthetic glucocorticoid dexamethasone induces the transcription of the IκBα gene, which results in an increased rate of Iκbα protein synthesis, which is predicted to markedly decrease cytokine secretion and thus effectively block the activation of the immune system.
Abstract: Glucocorticoids are potent immunosuppressive drugs, but their mechanism is poorly understood. Nuclear factor kappa B (NF-κB), a regulator of immune system and inflammation genes, may be a target for glucocorticoid-mediated immunosuppression. The activation of NF-κB involves the targeted degradation of its cytoplasmic inhibitor, IκBα, and the translocation of NF-κB to the nucleus. Here it is shown that the synthetic glucocorticoid dexamethasone induces the transcription of the IκBα gene, which results in an increased rate of IκBα protein synthesis. Stimulation by tumor necrosis factor causes the release of NF-κB from IκBα. However, in the presence of dexamethasone this newly released NF-κB quickly reassociates with newly synthesized IκBα, thus markedly reducing the amount of NF-κB that translocates to the nucleus. This decrease in nuclear NF-κB is predicted to markedly decrease cytokine secretion and thus effectively block the activation of the immune system.

1,673 citations

Journal ArticleDOI
TL;DR: Using a sensitive transfection-tumorigenicity assay, a novel transforming gene from the DNA of two patients with chronic myelogenous leukemia is isolated and sequence analysis indicates that the product of this gene, axl, is a receptor tyrosine kinase.
Abstract: Using a sensitive transfection-tumorigenicity assay, we have isolated a novel transforming gene from the DNA of two patients with chronic myelogenous leukemia. Sequence analysis indicates that the product of this gene, axl, is a receptor tyrosine kinase. Overexpression of axl cDNA in NIH 3T3 cells induces neoplastic transformation with the concomitant appearance of a 140-kDa axl tyrosine-phosphorylated protein. Expression of axl cDNA in the baculovirus system results in the expression of the appropriate recombinant protein that is recognized by antiphosphotyrosine antibodies, confirming that the axl protein is a tyrosine kinase. The juxtaposition of fibronectin type III and immunoglobulinlike repeats in the extracellular domain, as well as distinct amino acid sequences in the kinase domain, indicate that the axl protein represents a novel subclass of receptor tyrosine kinases.

758 citations

Journal ArticleDOI
05 Dec 1997-Science
TL;DR: The results provide an explanation for the requirement of NF-kappaB for Ras-mediated oncogenesis and provide evidence that Ras-transformed cells are susceptible to apoptosis even if they do not express the p53 tumor-suppressor gene product.
Abstract: The ras proto-oncogene is frequently mutated in human tumors and functions to chronically stimulate signal transduction cascades resulting in the synthesis or activation of specific transcription factors, including Ets, c-Myc, c-Jun, and nuclear factor kappa B (NF-kappaB). These Ras-responsive transcription factors are required for transformation, but the mechanisms by which these proteins facilitate oncogenesis have not been fully established. Oncogenic Ras was shown to initiate a p53-independent apoptotic response that was suppressed through the activation of NF-kappaB. These results provide an explanation for the requirement of NF-kappaB for Ras-mediated oncogenesis and provide evidence that Ras-transformed cells are susceptible to apoptosis even if they do not express the p53 tumor-suppressor gene product.

550 citations

Journal ArticleDOI
TL;DR: It is shown here that mTOR downstream from Akt controls NFB activity in PTEN-null/inactive prostate cancer cells via interaction with and stimulation of IKK, and the mTOR-associated protein Raptor is required for the ability of Akt to induce N FB activity.
Abstract: While NF-κB is considered to play key roles in the development and progression of many cancers, the mechanisms whereby this transcription factor is activated in cancer are poorly understood. A key oncoprotein in a variety of cancers is the serine–threonine kinase Akt, which can be activated by mutations in PI3K, by loss of expression/activity of PTEN, or through signaling induced by growth factors and their receptors. A key effector of Akt-induced signaling is the regulatory protein mTOR (mammalian target of rapamycin). We show here that mTOR downstream from Akt controls NF-κB activity in PTEN-null/inactive prostate cancer cells via interaction with and stimulation of IKK. The mTOR-associated protein Raptor is required for the ability of Akt to induce NF-κB activity. Correspondingly, the mTOR inhibitor rapamycin is shown to suppress IKK activity in PTEN-deficient prostate cancer cells through a mechanism that may involve dissociation of Raptor from mTOR. The results provide insight into the effects of Akt/mTOR-dependent signaling on gene expression and into the therapeutic action of rapamycin.

543 citations

Journal ArticleDOI
TL;DR: These studies demonstrate that NF-kappa B augments gene expression mediated by a multimerized c-fos serum response element in the presence of C/EBP.
Abstract: NF-kappa B and C/EBP represent distinct families of transcription factors that target unique DNA enhancer elements. The heterodimeric NF-kappa B complex is composed of two subunits, a 50- and a 65-kDa protein. All members of the NF-kappa B family, including the product of the proto-oncogene c-rel, are characterized by their highly homologous approximately 300-amino-acid N-terminal region. This Rel homology domain mediates DNA binding, dimerization, and nuclear targeting of these proteins. C/EBP contains the bZIP region, which is characterized by two motifs in the C-terminal half of the protein: a basic region involved in DNA binding and a leucine zipper motif involved in dimerization. The C/EBP family consist of several related proteins, C/EBP alpha, C/EBP beta, C/EBP gamma, and C/EBP delta, that form homodimers and that form heterodimers with each other. We now demonstrated the unexpected cross-coupling of members of the NF-kappa B family three members of the C/EBP family. NF-kappa B p65, p50, and Rel functionally synergize with C/EBP alpha, C/EBP beta, and C/EBP delta. This cross-coupling results in the inhibition of promoters with kappa B enhancer motifs and in the synergistic stimulation of promoters with C/EBP binding sites. These studies demonstrate that NF-kappa B augments gene expression mediated by a multimerized c-fos serum response element in the presence of C/EBP. We show a direct physical association of the bZIP region of C/EBP with the Rel homology domain of NF-kappa B. The cross-coupling of NF-kappa B with C/EBP highlights a mechanism of gene regulation involving an interaction between distinct transcription factor families.

520 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review considers recent findings regarding GC action and generates criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stress-response or, as an additional category, is preparative for a subsequent stressor.
Abstract: The secretion of glucocorticoids (GCs) is a classic endocrine response to stress. Despite that, it remains controversial as to what purpose GCs serve at such times. One view, stretching back to the time of Hans Selye, posits that GCs help mediate the ongoing or pending stress response, either via basal levels of GCs permitting other facets of the stress response to emerge efficaciously, and/or by stress levels of GCs actively stimulating the stress response. In contrast, a revisionist viewpoint posits that GCs suppress the stress response, preventing it from being pathologically overactivated. In this review, we consider recent findings regarding GC action and, based on them, generate criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stressresponse or, as an additional category, is preparative for a subsequent stressor. We apply these GC actions to the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology. We find that GC actions fall into markedly different categories, depending on the physiological endpoint in question, with evidence for mediating effects in some cases, and suppressive or preparative in others. We then attempt to assimilate these heterogeneous GC actions into a physiological whole. (Endocrine Reviews 21: 55‐ 89, 2000)

6,707 citations

Journal ArticleDOI
TL;DR: The transcription factor NF-κB has attracted widespread attention among researchers in many fields based on its unusual and rapid regulation, the wide range of genes that it controls, its central role in immunological processes, the complexity of its subunits, and its apparent involvement in several diseases.
Abstract: ▪ Abstract The transcription factor NF-κB has attracted widespread attention among researchers in many fields based on the following: its unusual and rapid regulation, the wide range of genes that it controls, its central role in immunological processes, the complexity of its subunits, and its apparent involvement in several diseases. A primary level of control for NF-κB is through interactions with an inhibitor protein called IκB. Recent evidence confirms the existence of multiple forms of IκB that appear to regulate NF-κB by distinct mechanisms. NF-κB can be activated by exposure of cells to LPS or inflammatory cytokines such as TNF or IL-1, viral infection or expression of certain viral gene products, UV irradiation, B or T cell activation, and by other physiological and nonphysiological stimuli. Activation of NF-κB to move into the nucleus is controlled by the targeted phosphorylation and subsequent degradation of IκB. Exciting new research has elaborated several important and unexpected findings that...

5,833 citations

Journal ArticleDOI
TL;DR: Recently, significant advances have been made in elucidating the details of the pathways through which signals are transmitted to the NF-kappa B:I kappa B complex in the cytosol and their implications for the study of NF-Kappa B.
Abstract: ▪ Abstract The transcription factor NF-κB, more than a decade after its discovery, remains an exciting and active area of study. The involvement of NF-κB in the expression of numerous cytokines and adhesion molecules has supported its role as an evolutionarily conserved coordinating element in the organism's response to situations of infection, stress, and injury. Recently, significant advances have been made in elucidating the details of the pathways through which signals are transmitted to the NF-κB:IκB complex in the cytosol. The field now awaits the discovery and characterization of the kinase responsible for the inducible phosphorylation of IκB proteins. Another exciting development has been the demonstration that in certain situations NF-κB acts as an anti-apoptotic protein; therefore, elucidation of the mechanism by which NF-κB protects against cell death is an important goal. Finally, the generation of knockouts of members of the NF-κB/IκB family has allowed the study of the roles of these protein...

5,324 citations

Journal ArticleDOI
TL;DR: In chronic inflammatory diseases, such as asthma, rheumatoid arthritis, inflammatory bowel disease, and psoriasis, several cytokines recruit activated immune and inflammatory cells to the site of lesions, thereby amplifying and perpetuating the inflammatory state.
Abstract: In chronic inflammatory diseases, such as asthma, rheumatoid arthritis, inflammatory bowel disease, and psoriasis, several cytokines recruit activated immune and inflammatory cells to the site of lesions, thereby amplifying and perpetuating the inflammatory state.1 These activated cells produce many other mediators of inflammation. What causes these diseases is still a mystery, but the disease process results from an interplay of genetic and environmental factors. Genes, such as those for atopy in asthma and for HLA antigens in rheumatoid arthritis and inflammatory bowel disease, may determine a patient's susceptibility to the disease and the disease's severity, but environmental factors, often unknown, . . .

4,624 citations

Journal ArticleDOI
08 Feb 2008-Cell
TL;DR: The authors synthesize some of the basic principles that have emerged from studies of NF-kappaB, and aim to generate a more unified view of the regulation of the transcription factor.

3,996 citations