scispace - formally typeset
Search or ask a question
Author

Patricia Fitzgerald-Bocarsly

Bio: Patricia Fitzgerald-Bocarsly is an academic researcher from Rutgers University. The author has contributed to research in topics: Immune system & Peripheral blood mononuclear cell. The author has an hindex of 32, co-authored 71 publications receiving 6579 citations. Previous affiliations of Patricia Fitzgerald-Bocarsly include Rutgers Biomedical and Health Sciences & University of Medicine and Dentistry of New Jersey.


Papers
More filters
Journal ArticleDOI
11 Jun 1999-Science
TL;DR: Purified IPCs are here shown to be the CD4(+)CD11c- type 2 dendritic cell precursors (pDC2s), which produce 200 to 1000 times more IFN than other blood cells after microbial challenge and are thus an effector cell type of the immune system, critical for antiviral and antitumor immune responses.
Abstract: Interferons (IFNs) are the most important cytokines in antiviral immune responses. “Natural IFN-producing cells” (IPCs) in human blood express CD4 and major histocompatibility complex class II proteins, but have not been isolated and further characterized because of their rarity, rapid apoptosis, and lack of lineage markers. Purified IPCs are here shown to be the CD4+CD11c− type 2 dendritic cell precursors (pDC2s), which produce 200 to 1000 times more IFN than other blood cells after microbial challenge. pDC2s are thus an effector cell type of the immune system, critical for antiviral and antitumor immune responses.

2,328 citations

Journal ArticleDOI
TL;DR: It is shown that imidazoquinoline molecules directly induce pDC maturation as determined by cytokine induction, CCR7 and co-stimulatory marker expression and prolonging viability, and that resiquimod more effectively matures pDC than either IL-3 or IFN-alpha alone.

425 citations

Journal ArticleDOI
TL;DR: It is concluded that PDC but not MDDC are uniquely preprogrammed to respond rapidly and effectively to a range of viral pathogens with high levels of IFN‐α production due to the high level of constitutively expressed IRF‐7.
Abstract: Plasmacytoid dendritic cells (PDC) produce high levels of type I IFN upon stimulation with viruses, while monocytes and monocyte-derived dendritic cells (MDDC) produce significantly lower levels. To find what determines the high production of type I IFN in PDC, we examined the relative levels of IRF transcription factors, some of which play critical roles in the induction of IFN. Furthermore, to determine whether the differences could result from expression of distinct IFNA subtypes, the profile of IFNA genes expressed was examined. PDC responded equally well to stimulation with HSV-1 and Sendai virus (SV) by producing high levels of type I IFN, whereas the MDDC and monocyte response to SV were lower, and neither responded well to HSV-1. All three populations constitutively expressed most of the IRF genes. However, real-time RT-PCR demonstrated increased levels of IRF-7 transcripts in PDC compared with monocytes. As determined by intracellular flow cytometry, the PDC constitutively expressed significantly higher levels of IRF-7 protein than the other populations while IRF-3 levels were similar among populations. Analysis of the profile of IFNA genes expressed in virus-stimulated PDC, monocytes and MDDC demonstrated that each population expressed IFNA1 as the major subtype but that the range of the subtypes expressed in PDC was broader, with some donor and stimulus-dependent variability. We conclude that PDC but not MDDC are uniquely preprogrammed to respond rapidly and effectively to a range of viral pathogens with high levels of IFN-alpha production due to the high levels of constitutively expressed IRF-7.

355 citations

Journal ArticleDOI
TL;DR: The signaling pathways in pDC are discussed, their roles in linking innate and adaptive immunity, and their role in infectious disease and autoimmunity are discussed.

329 citations

Journal ArticleDOI
TL;DR: It is concluded that deficient production of IFN-alpha by pDC2 from HIV-infected patients results from both selective loss of these cells and their qualitative dysfunction, likely to be key contributors to HIV pathogenesis.

256 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Dendritic cells are antigen-presenting cells with a unique ability to induce primary immune responses and may be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response.
Abstract: Dendritic cells (DCs) are antigen-presenting cells with a unique ability to induce primary immune responses. DCs capture and transfer information from the outside world to the cells of the adaptive immune system. DCs are not only critical for the induction of primary immune responses, but may also be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response. Although our understanding of DC biology is still in its infancy, we are now beginning to use DC-based immunotherapy protocols to elicit immunity against cancer and infectious diseases.

6,758 citations

Journal ArticleDOI
TL;DR: Findings that have advanced the understanding of IL-10 and its receptor are highlighted, as well as its in vivo function in health and disease.
Abstract: Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.

6,308 citations

Journal ArticleDOI
TL;DR: This unit discusses mammalian Toll receptors (TLR1‐10) that have an essential role in the innate immune recognition of microorganisms and are discussed are TLR‐mediated signaling pathways and antibodies that are available to detect specific TLRs.
Abstract: The innate immune system in drosophila and mammals senses the invasion of microorganisms using the family of Toll receptors, stimulation of which initiates a range of host defense mechanisms. In drosophila antimicrobial responses rely on two signaling pathways: the Toll pathway and the IMD pathway. In mammals there are at least 10 members of the Toll-like receptor (TLR) family that recognize specific components conserved among microorganisms. Activation of the TLRs leads not only to the induction of inflammatory responses but also to the development of antigen-specific adaptive immunity. The TLR-induced inflammatory response is dependent on a common signaling pathway that is mediated by the adaptor molecule MyD88. However, there is evidence for additional pathways that mediate TLR ligand-specific biological responses.

5,915 citations

Journal ArticleDOI
01 Jul 2003-Immunity
TL;DR: Using a murine adoptive transfer system to probe monocyte homing and differentiation in vivo, two functional subsets among murine blood monocytes are identified: a short-lived CX(3)CR1(lo)CCR2(+)Gr1(+) subset that is actively recruited to inflamed tissues and a CX (3) CR1(hi)CCS1-dependent recruitment to noninflamed tissues.

3,307 citations

Journal ArticleDOI
TL;DR: Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs.
Abstract: Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.

2,621 citations