scispace - formally typeset
Search or ask a question
Author

Patricia Godoy

Other affiliations: University of Granada
Bio: Patricia Godoy is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Pseudomonas putida & Mutant. The author has an hindex of 20, co-authored 33 publications receiving 2195 citations. Previous affiliations of Patricia Godoy include University of Granada.

Papers
More filters
Journal ArticleDOI
TL;DR: The number of efflux pump operons has been found to correlate with the degree of solvent tolerance in different P. putida strains, and the operation of these efflux pumps seems to be coupled to the proton motive force via the TonB system, although the intimate mechanism of energy transfer remains elusive.
Abstract: Organic solvents can be toxic to microorganisms, depending on the inherent toxicity of the solvent and the intrinsic tolerance of the bacterial species and strains. The toxicity of a given solvent correlates with the logarithm of its partition coefficient in n-octanol and water (log Pow). Organic solvents with a log Pow between 1.5 and 4.0 are extremely toxic for microorganisms and other living cells because they partition preferentially in the cytoplasmic membrane, disorganizing its structure and impairing vital functions. Several possible mechanisms leading to solvent-tolerance in gram-negative bacteria have been proposed: (a) adaptive alterations of the membrane fatty acids and phospholipid headgroup composition, (b) formation of vesicles loaded with toxic compounds, and (c) energy-dependent active efflux pumps belonging to the resistance-nodulation-cell division (RND) family, which export toxic organic solvents to the external medium. In these mechanisms, changes in the phospholipid profile and extrusion of the solvents seem to be shared by different strains. The most significant changes in phospholipids are an increase in the melting temperature of the membranes by rapid cis-to-trans isomerization of unsaturated fatty acids and modifications in the phospholipid headgroups. Toluene efflux pumps are involved in solvent tolerance in several gram-negative strains, e.g., Escherichia coli, Pseudomonas putida, and Pseudomonas aeruginosa. The AcrAB-TolC and AcrEF-TolC efflux pumps are important for n-hexane tolerance in E. coli. A number of P. putida strains have been isolated that tolerate toxic hydrocarbons such as toluene, styrene, and p-xylene. At least three efflux pumps (TtgABC, TtgDEF, and TtgGHI) are present in the most extensively characterized solvent-tolerant strain, P. putida DOT-T1E, and the number of efflux pumps has been found to correlate with the degree of solvent tolerance in different P. putida strains. The operation of these efflux pumps seems to be coupled to the proton motive force via the TonB system, although the intimate mechanism of energy transfer remains elusive. Specific and global regulators control the expression of the efflux pump operons of E. coli and P. putida at the transcriptional level.

763 citations

Journal ArticleDOI
TL;DR: Mutants unable to carry out cis → trans isomerization of unsaturated lipids, that exhibit altered cell envelopes because of the lack of the OprL protein, or that are unable to exclude toluene from cell membranes are hypersensitive to toluenes.

289 citations

Journal ArticleDOI
TL;DR: The basic mechanisms underlying solvent tolerance in Pseudomonas putida DOT-T1E are efflux pumps that remove the solvent from bacterial cell membranes and the mutant was unable to remove 1,2,4-[14C]trichlorobenzene from the cell membranes when grown on Luria-Bertani medium but was able to remove the aromatic compound when pregrown on LB medium with toluene supplied via the gas phase.
Abstract: The basic mechanisms underlying solvent tolerance in Pseudomonas putida DOT-T1E are efflux pumps that remove the solvent from bacterial cell membranes. The solvent-tolerant P. putida DOT-T1E grows in the presence of high concentrations (e.g., 1% [vol/vol]) of toluene and octanol. Growth of P. putida DOT-T1E cells in LB in the presence of toluene supplied via the gas phase has a clear effect on cell survival: the sudden addition of 0.3% (vol/vol) toluene to P. putida DOT-T1E pregrown with toluene in the gas phase resulted in survival of almost 100% of the initial cell number, whereas only 0.01% of cells pregrown in the absence of toluene tolerated exposure to this aromatic hydrocarbon. One class of toluene-sensitive octanol-tolerant mutant was isolated after Tn5-′phoA mutagenesis of wild-type P. putida DOT-T1E cells. The mutant, called P. putida DOT-T1E-18, was extremely sensitive to 0.3% (vol/vol) toluene added when cells were pregrown in the absence of toluene, whereas pregrowth on toluene supplied via the gas phase resulted in survival of about 0.0001% of the initial number. Solvent exclusion was tested with 1,2,4-[14C]trichlorobenzene. The levels of radiochemical accumulated in wild-type cells grown in the absence and in the presence of toluene were not significantly different. In contrast, the mutant was unable to remove 1,2,4-[14C]trichlorobenzene from the cell membranes when grown on Luria-Bertani (LB) medium but was able to remove the aromatic compound when pregrown on LB medium with toluene supplied via the gas phase. The amount of 14C-labeled substrate in whole cells increased in competition assays in which toluene and xylenes were the unlabeled competitors, whereas this was not the case when benzene was the competitor. This finding suggests that the exclusion system works specifically with certain aromatic substrates. The mutation in P. putida DOT-T1E-18 was cloned, and the knockedout gene was sequenced and found to be homologous to the drug exclusion gene mexB, which belongs to the efflux pump family of the resistant nodulator division type.

246 citations

Journal ArticleDOI
TL;DR: Knockout mutants revealed that CspA, XenA, and Tuf-1 play a role in solvent tolerance in Pseudomonas, although this role is probably not specific to toluene, as indicated by the fact that all mutants grew more slowly than the wild type without toLUene.
Abstract: Pseudomonas putida DOT-T1E is tolerant to toluene and other toxic hydrocarbons through extrusion of the toxic compounds from the cell by means of three efflux pumps, TtgABC, TtgDEF, and TtgGHI. To identify other cellular factors that allow the growth of P. putida DOT-T1E in the presence of high concentrations of toluene, we performed two-dimensional gel analyses of proteins extracted from cultures grown on glucose in the presence and in the absence of the organic solvent. From a total of 531 spots, 134 proteins were observed to be toluene specific. In the absence of toluene, 525 spots were clearly separated and 117 proteins were only present in this condition. Moreover, 35 proteins were induced by at least twofold in the presence of toluene whereas 26 were repressed by at least twofold under these conditions. We reasoned that proteins that were highly induced could play a role in toluene tolerance. These proteins, identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry, were classified into four categories: 1, proteins involved in the catabolism of toluene; 2, proteins involved in the channeling of metabolic intermediates to the Krebs cycle and activation of purine biosynthesis; 3, proteins involved in sugar transport; 4, stress-related proteins. The set of proteins in groups 2 and 3 suggests that the high energy demand required for solvent tolerance is achieved via activation of cell metabolism. The role of chaperones that facilitate the proper folding of newly synthesized proteins under toluene stress conditions was analyzed in further detail. Knockout mutants revealed that CspA, XenA, and Tuf-1 play a role in solvent tolerance in Pseudomonas, although this role is probably not specific to toluene, as indicated by the fact that all mutants grew more slowly than the wild type without toluene.

180 citations

Journal ArticleDOI
TL;DR: Pseudomonas putida KT2440, a saprophytic soil bacterium that colonizes the plant root, is a suitable microorganism for the removal of pollutants and a stable host for foreign genes used in biotransformation processes and the conditions for the optimal preservation of the strain and its derivatives for long-term storage are investigated.
Abstract: Pseudomonas putida KT2440, a saprophytic soil bacterium that colonizes the plant root, is a suitable microorganism for the removal of pollutants and a stable host for foreign genes used in biotransformation processes. Because of its potential use in agriculture and industry, we investigated the conditions for the optimal preservation of the strain and its derivatives for long-term storage. The highest survival rates were achieved with cells that had reached the stationary phase and which had been subjected to freeze-drying in the presence of disaccharides (trehalose, maltose, and lactose) as lyoprotectants. Using fluorescence polarization techniques, we show that cell membranes of KT2440 were more rigid in the stationary phase than in the exponential phase of growth. This is consistent with the fact that cells grown in the stationary phase exhibited a higher proportion of C17:cyclopropane as a fatty acid than cells in the exponential phase. Mutants for the cfaB gene, which encodes the main C17:cyclopropane synthase, and for the cfaA gene, which encodes a minor C17:cyclopropane synthase, were constructed. These mutants were more sensitive to freeze-drying than wild-type cells, particularly the mutant with a knockout in the cfaB gene that produced less than 2% of the amount of C17:cyclopropane produced by the parental strain.

96 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized and used to investigate the dynamics of microbial communities in petroleum-impacted ecosystems.
Abstract: Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times ( 2 S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments.

1,346 citations

Journal ArticleDOI
TL;DR: The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans and showed that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions.
Abstract: What makes a heavy metal resistant bacterium heavy metal resistant? The mechanisms of action, physiological functions, and distribution of metal-exporting proteins are outlined, namely: CBA efflux pumps driven by proteins of the resistance–nodulation–cell division superfamily, P-type ATPases, cation diffusion facilitator and chromate proteins, NreB- and CnrT-like resistance factors. The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans. This comparison shows that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions. Some of these systems are widespread and serve in the basic defense of the cell against superfluous heavy metals, but some are highly specialized and occur only in a few bacteria. Possession of the latter systems makes a bacterium heavy metal resistant.

1,333 citations

Journal ArticleDOI
TL;DR: This review discusses the current knowledge on the molecular mechanisms involved in both types of resistance in bacteria.
Abstract: Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur by the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs. This review discusses our current knowledge on the molecular mechanisms involved in both types of resistance.

1,331 citations

Journal ArticleDOI
TL;DR: Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes.
Abstract: Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.

1,308 citations

Journal ArticleDOI
01 Jan 2004-Drugs
TL;DR: Fluoroquinolones and β-lactams of the latest generations are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents.
Abstract: Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.

1,118 citations