scispace - formally typeset
Search or ask a question
Author

Patricia Hartge

Bio: Patricia Hartge is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Population & Risk factor. The author has an hindex of 107, co-authored 390 publications receiving 42043 citations. Previous affiliations of Patricia Hartge include Sheba Medical Center & University of Utah.


Papers
More filters
Journal ArticleDOI
TL;DR: The risks of breast cancer may be overestimated, but they fall well below previous estimates based on subjects from high-risk families.
Abstract: Background Carriers of germ-line mutations in BRCA1 and BRCA2 from families at high risk for cancer have been estimated to have an 85 percent risk of breast cancer. Since the combined frequency of BRCA1 and BRCA2 mutations exceeds 2 percent among Ashkenazi Jews, we were able to estimate the risk of cancer in a large group of Jewish men and women from the Washington, D.C., area. Methods We collected blood samples from 5318 Jewish subjects who had filled out epidemiologic questionnaires. Carriers of the 185delAG and 5382insC mutations in BRCA1 and the 6174delT mutation in BRCA2 were identified with assays based on the polymerase chain reaction. We estimated the risks of breast and other cancers by comparing the cancer histories of relatives of carriers of the mutations and noncarriers. Results One hundred twenty carriers of a BRCA1 or BRCA2 mutation were identified. By the age of 70, the estimated risk of breast cancer among carriers was 56 percent (95 percent confidence interval, 40 to 73 percent); of ovar...

2,229 citations

Journal ArticleDOI
TL;DR: In white adults, overweight and obesity (and possibly underweight) are associated with increased all-cause mortality and the hazard ratios for the men were similar.
Abstract: BACKGROUND A high body-mass index (BMI, the weight in kilograms divided by the square of the height in meters) is associated with increased mortality from cardiovascular disease and certain cancers, but the precise relationship between BMI and all-cause mortality remains uncertain. METHODS We used Cox regression to estimate hazard ratios and 95% confidence intervals for an association between BMI and all-cause mortality, adjusting for age, study, physical activity, alcohol consumption, education, and marital status in pooled data from 19 prospective studies encompassing 1.46 million white adults, 19 to 84 years of age (median, 58). RESULTS The median baseline BMI was 26.2. During a median follow-up period of 10 years (range, 5 to 28), 160,087 deaths were identified. Among healthy participants who never smoked, there was a J-shaped relationship between BMI and all-cause mortality. With a BMI of 22.5 to 24.9 as the reference category, hazard ratios among women were 1.47 (95 percent confidence interval [CI], 1.33 to 1.62) for a BMI of 15.0 to 18.4; 1.14 (95% CI, 1.07 to 1.22) for a BMI of 18.5 to 19.9; 1.00 (95% CI, 0.96 to 1.04) for a BMI of 20.0 to 22.4; 1.13 (95% CI, 1.09 to 1.17) for a BMI of 25.0 to 29.9; 1.44 (95% CI, 1.38 to 1.50) for a BMI of 30.0 to 34.9; 1.88 (95% CI, 1.77 to 2.00) for a BMI of 35.0 to 39.9; and 2.51 (95% CI, 2.30 to 2.73) for a BMI of 40.0 to 49.9. In general, the hazard ratios for the men were similar. Hazard ratios for a BMI below 20.0 were attenuated with longer-term follow-up. CONCLUSIONS In white adults, overweight and obesity (and possibly underweight) are associated with increased all-cause mortality. All-cause mortality is generally lowest with a BMI of 20.0 to 24.9.

1,874 citations

Journal ArticleDOI
TL;DR: The associations of both overweight and obesity with higher all-cause mortality were broadly consistent in four continents and supports strategies to combat the entire spectrum of excess adiposity in many populations.

1,731 citations

Journal ArticleDOI
01 Jan 2006-Blood
TL;DR: Striking differences in incidence patterns by histologic subtype strongly suggest that there is etiologic heterogeneity among lymphoid neoplasms and support the pursuit of epidemiologic analysis by subtype.

1,497 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantify the dose-response association between leisure time physical activity and mortality and define the upper limit of benefit or harm associated with increased levels of physical activity.
Abstract: Importance The 2008 Physical Activity Guidelines for Americans recommended a minimum of 75 vigorous-intensity or 150 moderate-intensity minutes per week (7.5 metabolic-equivalent hours per week) of aerobic activity for substantial health benefit and suggested additional benefits by doing more than double this amount. However, the upper limit of longevity benefit or possible harm with more physical activity is unclear. Objective To quantify the dose-response association between leisure time physical activity and mortality and define the upper limit of benefit or harm associated with increased levels of physical activity. Design, Setting, and Participants We pooled data from 6 studies in the National Cancer Institute Cohort Consortium (baseline 1992-2003). Population-based prospective cohorts in the United States and Europe with self-reported physical activity were analyzed in 2014. A total of 661 137 men and women (median age, 62 years; range, 21-98 years) and 116 686 deaths were included. We used Cox proportional hazards regression with cohort stratification to generate multivariable-adjusted hazard ratios (HRs) and 95% CIs. Median follow-up time was 14.2 years. Exposures Leisure time moderate- to vigorous-intensity physical activity. Main Outcomes and Measures The upper limit of mortality benefit from high levels of leisure time physical activity. Results Compared with individuals reporting no leisure time physical activity, we observed a 20% lower mortality risk among those performing less than the recommended minimum of 7.5 metabolic-equivalent hours per week (HR, 0.80 [95% CI, 0.78-0.82]), a 31% lower risk at 1 to 2 times the recommended minimum (HR, 0.69 [95% CI, 0.67-0.70]), and a 37% lower risk at 2 to 3 times the minimum (HR, 0.63 [95% CI, 0.62-0.65]). An upper threshold for mortality benefit occurred at 3 to 5 times the physical activity recommendation (HR, 0.61 [95% CI, 0.59-0.62]); however, compared with the recommended minimum, the additional benefit was modest (31% vs 39%). There was no evidence of harm at 10 or more times the recommended minimum (HR, 0.69 [95% CI, 0.59-0.78]). A similar dose-response relationship was observed for mortality due to cardiovascular disease and to cancer. Conclusions and Relevance Meeting the 2008 Physical Activity Guidelines for Americans minimum by either moderate- or vigorous-intensity activities was associated with nearly the maximum longevity benefit. We observed a benefit threshold at approximately 3 to 5 times the recommended leisure time physical activity minimum and no excess risk at 10 or more times the minimum. In regard to mortality, health care professionals should encourage inactive adults to perform leisure time physical activity and do not need to discourage adults who already participate in high-activity levels.

1,086 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination, and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake.
Abstract: The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.

52,293 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations

Journal ArticleDOI
TL;DR: A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.
Abstract: Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.

23,203 citations

Journal ArticleDOI
TL;DR: There are striking variations in the risk of different cancers by geographic area, most of the international variation is due to exposure to known or suspected risk factors related to lifestyle or environment, and provides a clear challenge to prevention.
Abstract: Estimates of the worldwide incidence, mortality and prevalence of 26 cancers in the year 2002 are now available in the GLOBOCAN series of the International Agency for Research on Cancer. The results are presented here in summary form, including the geographic variation between 20 large "areas" of the world. Overall, there were 10.9 million new cases, 6.7 million deaths, and 24.6 million persons alive with cancer (within three years of diagnosis). The most commonly diagnosed cancers are lung (1.35 million), breast (1.15 million), and colorectal (1 million); the most common causes of cancer death are lung cancer (1.18 million deaths), stomach cancer (700,000 deaths), and liver cancer (598,000 deaths). The most prevalent cancer in the world is breast cancer (4.4 million survivors up to 5 years following diagnosis). There are striking variations in the risk of different cancers by geographic area. Most of the international variation is due to exposure to known or suspected risk factors related to lifestyle or environment, and provides a clear challenge to prevention.

17,730 citations

Journal ArticleDOI
TL;DR: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative developed recommendations on what should be included in an accurate and complete report of an observational study, resulting in a checklist of 22 items (the STROBE statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles.
Abstract: Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the Web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.

15,454 citations