scispace - formally typeset
Search or ask a question
Author

Patrícia T. Bozza

Bio: Patrícia T. Bozza is an academic researcher from Oswaldo Cruz Foundation. The author has contributed to research in topics: Lipid droplet & Inflammation. The author has an hindex of 66, co-authored 331 publications receiving 14834 citations. Previous affiliations of Patrícia T. Bozza include Harvard University & Beth Israel Deaconess Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used a multiplex system for simultaneous detection of 17 cytokines (IL-1β, IL-2, IL 4, IL 5, IL 6, IL 7, IL 8, IL 9, IL 10, IL 11, IL 12, IL 13, interferon-γ, MCP-1, macrophage inflammatory protein-1 and tumour necrosis factor-α).
Abstract: The current shortage of accurate and readily available, validated biomarkers of disease severity in sepsis is an important limitation when attempting to stratify patients into homogeneous groups, in order to study pathogenesis or develop therapeutic interventions. The aim of the present study was to determine the cytokine profile in plasma of patients with severe sepsis by using a multiplex system for simultaneous detection of 17 cytokines. This was a prospective cohort study conducted in four tertiary hospitals. A total of 60 patients with a recent diagnosis of severe sepsis were included. Plasma samples were collected for measurement of cytokine concentrations. A multiplex analysis was performed to evaluate levels of 17 cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, interferon-γ, granulocyte colony-stimulating factor [G-CSF], granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein [MCP]-1, macrophage inflammatory protein-1 and tumour necrosis factor-α). Cytokine concentrations were related to the presence of severe sepsis or septic shock, the severity and evolution of organ failure, and early and late mortality. Concentrations of IL-1β, IL-6, IL-7, IL-8, IL-10, IL-13, interferon-γ, MCP-1 and tumour necrosis factor-α were significantly higher in septic shock patients than in those with severe sepsis. Cytokine concentrations were associated with severity and evolution of organ dysfunction. With regard to the severity of organ dysfunction on day 1, IL-8 and MCP-1 exhibited the best correlation with Sequential Organ Failure Assessment score. In addition, IL-6, IL-8 and G-CSF concentrations during the first 24 hours were predictive of worsening organ dysfunction or failure of organ dysfunction to improve on day three. In terms of predicting mortality, the cytokines IL-1β, IL-4, IL-6, IL-8, MCP-1 and G-CSF had good accuracy for predicting early mortality (< 48 hours), and IL-8 and MCP-1 had the best accuracy for predicting mortality at 28 days. In multivariate analysis, only MCP-1 was independently associated with prognosis. In this exploratory analysis we demonstrated that use of a multiple cytokine assay platform allowed identification of distinct cytokine profiles associated with sepsis severity, evolution of organ failure and death.

651 citations

Journal ArticleDOI
TL;DR: It is proposed that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation and a link between lipid droplet metabolism and viral replication is suggested.
Abstract: Dengue virus is responsible for the highest rates of disease and mortality among the members of the Flavivirus genus. Dengue epidemics are still occurring around the world, indicating an urgent need of prophylactic vaccines and antivirals. In recent years, a great deal has been learned about the mechanisms of dengue virus genome amplification. However, little is known about the process by which the capsid protein recruits the viral genome during encapsidation. Here, we found that the mature capsid protein in the cytoplasm of dengue virus infected cells accumulates on the surface of ER-derived organelles named lipid droplets. Mutagenesis analysis using infectious dengue virus clones has identified specific hydrophobic amino acids, located in the center of the capsid protein, as key elements for lipid droplet association. Substitutions of amino acid L50 or L54 in the capsid protein disrupted lipid droplet targeting and impaired viral particle formation. We also report that dengue virus infection increases the number of lipid droplets per cell, suggesting a link between lipid droplet metabolism and viral replication. In this regard, we found that pharmacological manipulation of the amount of lipid droplets in the cell can be a means to control dengue virus replication. In addition, we developed a novel genetic system to dissociate cis-acting RNA replication elements from the capsid coding sequence. Using this system, we found that mislocalization of a mutated capsid protein decreased viral RNA amplification. We propose that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation.

506 citations

Journal ArticleDOI
10 Sep 2020-Blood
TL;DR: It is demonstrated that increased platelet activation and platelet-monocyte aggregate formation are observed in severe COVID-19 patients, but not in patients presenting mild CO VID-19 syndrome, and these data shed light on new pathological mechanisms involving plateletactivation and Platelet-dependent monocyte TF expression, which were associated with COVID -19 severity and mortality.

500 citations

Journal ArticleDOI
13 Jan 2000-Nature
TL;DR: The results suggest that continual lymphocyte apoptosis and phagocytosis of apoptotic cells by macrophages have a role in parasite persistence in the host, and that cyclooxygenase inhibitors have potential therapeutic application in the control of parasite replication and spread in Chagas' disease.
Abstract: After apoptosis, phagocytes prevent inflammation and tissue damage by the uptake and removal of dead cells. In addition, apoptotic cells evoke an anti-inflammatory response through macrophages. We have previously shown that there is intense lymphocyte apoptosis in an experimental model of Chagas' disease, a debilitating cardiac illness caused by the protozoan Trypanosoma cruzi. Here we show that the interaction of apoptotic, but not necrotic T lymphocytes with macrophages infected with T. cruzi fuels parasite growth in a manner dependent on prostaglandins, transforming growth factor-beta (TGF-beta) and polyamine biosynthesis. We show that the vitronectin receptor is critical, in both apoptotic-cell cytoadherence and the induction of prostaglandin E2/TGF-beta release and ornithine decarboxylase activity in macrophages. A single injection of apoptotic cells in infected mice increases parasitaemia, whereas treatment with cyclooxygenase inhibitors almost completely ablates it in vivo. These results suggest that continual lymphocyte apoptosis and phagocytosis of apoptotic cells by macrophages have a role in parasite persistence in the host, and that cyclooxygenase inhibitors have potential therapeutic application in the control of parasite replication and spread in Chagas' disease.

433 citations

Journal ArticleDOI
10 May 1996-Science
TL;DR: Results suggest that NFAT1 exerts a negative regulatory influence on the immune response, and in an in vivo model of allergic inflammation, the accumulation of eosinophils and levels of serum immunoglobulin E were increased.
Abstract: Transcription factors of the NFAT family are thought to play a major role in regulating the expression of cytokine genes and other inducible genes during the immune response. The role of NFAT1 was investigated by targeted disruption of the NFAT1 gene. Unexpectedly, cells from NFAT1 -/- mice showed increased primary responses to Leishmania major and mounted increased secondary responses to ovalbumin in vitro. In an in vivo model of allergic inflammation, the accumulation of eosinophils and levels of serum immunoglobulin E were increased in NFAT1 -/- mice. These results suggest that NFAT1 exerts a negative regulatory influence on the immune response.

374 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: Its striking inter- and intracellular signaling capacity makes it extremely difficult to predict the effect of NOS inhibitors and NO donors, which still hampers therapeutic applications.
Abstract: During the past two decades, nitric oxide (NO) has been recognized as one of the most versatile players in the immune system. It is involved in the pathogenesis and control of infectious diseases, tumors, autoimmune processes and chronic degenerative diseases. Because of its variety of reaction partners (DNA, proteins, low–molecular weight thiols, prosthetic groups, reactive oxygen intermediates), its widespread production (by three different NO synthases (NOS) and the fact that its activity is strongly influenced by its concentration, NO continues to surprise and perplex immunologists. Today, there is no simple, uniform picture of the function of NO in the immune system. Protective and toxic effects of NO are frequently seen in parallel. Its striking inter- and intracellular signaling capacity makes it extremely difficult to predict the effect of NOS inhibitors and NO donors, which still hampers therapeutic applications.

2,944 citations

Journal ArticleDOI
TL;DR: New cellular and molecular mechanisms for the resolution of inflammation are presented, revealing key roles for eicosanoids, such as lipoxins, and recently discovered families of endogenous chemical mediators, termed resolvins and protectins, which have anti-inflammatory and pro-resolution properties.
Abstract: Active resolution of acute inflammation is a previously unrecognized interface between innate and adaptive immunity. Once thought to be a passive process, the resolution of inflammation is now shown to involve active biochemical programmes that enable inflamed tissues to return to homeostasis. This Review presents new cellular and molecular mechanisms for the resolution of inflammation, revealing key roles for eicosanoids, such as lipoxins, and recently discovered families of endogenous chemical mediators, termed resolvins and protectins. These mediators have anti-inflammatory and pro-resolution properties, thereby protecting organs from collateral damage, stimulating the clearance of inflammatory debris and promoting mucosal antimicrobial defence.

2,619 citations

Journal ArticleDOI
TL;DR: Recent data on the diversity of the NFAT family of transcription factors, the regulation of NFAT proteins within cells, and the cooperation ofNFAT proteins with other transcription factors to regulate the expression of inducible genes are discussed.
Abstract: As targets for the immunosuppressive drugs cyclosporin A and FK506, transcription factors of the NFAT (nuclear factor of activated T cells) family have been the focus of much attention. NFAT proteins, which are expressed in most immune-system cells, play a pivotal role in the transcription of cytokine genes and other genes critical for the immune response. The activity of NFAT proteins is tightly regulated by the calcium/calmodulin-dependent phosphatase calcineurin, a primary target for inhibition by cyclosporin A and FK506. Calcineurin controls the translocation of NFAT proteins from the cytoplasm to the nucleus of activated cells by interacting with an N-terminal regulatory domain conserved in the NFAT family. The DNA-binding domains of NFAT proteins resemble those of Rel-family proteins, and Rel and NFAT proteins show some overlap in their ability to bind to certain regulatory elements in cytokine genes. NFAT is also notable for its ability to bind cooperatively with transcription factors of the AP-1 (Fos/Jun) family to composite NFAT:AP-1 sites, found in the regulatory regions of many genes that are inducibly transcribed by immune-system cells. This review discusses recent data on the diversity of the NFAT family of transcription factors, the regulation of NFAT proteins within cells, and the cooperation of NFAT proteins with other transcription factors to regulate the expression of inducible genes.

2,606 citations

Journal ArticleDOI
TL;DR: The choice between life and death is one of the major events in regulation of the immune system and a major regulator of such life or death decisions is the transcription factor NF-κB as mentioned in this paper.
Abstract: The choice between life and death is one of the major events in regulation of the immune system. T cells that specifically recognize viral or bacterial antigens are selected to survive and proliferate in response to infection, whereas those that are self-reactive are eliminated via apoptosis. Even the survival of alloreactive T cells requires their proper costimulation and, when infection subsides, the activated T cells are eliminated. A major regulator of such life or death decisions is the transcription factor NF-κB. However, NF-κB cannot function alone. A variety of mechanisms exist to modulate its activity and thereby affect the ultimate outcome of a cell's fate.

2,543 citations