scispace - formally typeset
Search or ask a question
Author

Patrick Batail

Other affiliations: University of Nantes, University of Paris, IBM  ...read more
Bio: Patrick Batail is an academic researcher from University of Angers. The author has contributed to research in topics: Tetrathiafulvalene & Crystal structure. The author has an hindex of 40, co-authored 186 publications receiving 6176 citations. Previous affiliations of Patrick Batail include University of Nantes & University of Paris.


Papers
More filters
Journal ArticleDOI
TL;DR: A phase transition starting at 84 K and indicated by a marked color change of the sample has been found in the organic insulator tetrathiafulvalene-chloranil as mentioned in this paper.
Abstract: A phase transition starting at 84 K and indicated by a marked color change of the sample has been found in the organic insulator tetrathiafulvalene-chloranil. Optical, infrared, and Raman measurements indicate that this is a reversible transition from a nominally neutral (N) solid to a nominally ionic (I) salt. Surprisingly, the N-I transition is not first order, but occurs over a broad temperature region (\ensuremath{\sim}30 K), in which there is a coexistence of N and I molecules.

317 citations

Journal ArticleDOI

301 citations

Journal ArticleDOI
TL;DR: The phase diagram of the organic superconductor kappa-(ET)2Cu[N(CN)2]Cl has been accurately measured from 1H NMR and ac susceptibility techniques under helium gas pressure to determine the domains of stability of antiferromagnetic and superconducting orders in the pressure vs temperature plane.
Abstract: The phase diagram of the organic superconductor $\ensuremath{\kappa}\ensuremath{-}(\mathrm{ET}{)}_{2}\mathrm{Cu}[\mathrm{N}(\mathrm{CN}{)}_{2}]\mathrm{Cl}$ has been accurately measured from ${}^{1}\mathrm{H}$ NMR and ac susceptibility techniques under helium gas pressure. The domains of stability of antiferromagnetic and superconducting orders in the pressure vs temperature plane have been determined. Both phases overlap through a first-order boundary that separates two regions of inhomogeneous phase coexistence. The boundary curve merges with the first-order line of the metal-insulator transition which ends with a critical point at higher temperature. The whole phase diagram features a pointlike region where metallic, insulating, antiferromagnetic, and non-s-wave superconducting phases all meet.

293 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations

Journal ArticleDOI
TL;DR: 1. Advantages and disadvantages of Chemical Redox Agents, 2. Reversible vs Irreversible ET Reagents, 3. Categorization of Reagent Strength.
Abstract: 1. Advantages of Chemical Redox Agents 878 2. Disadvantages of Chemical Redox Agents 879 C. Potentials in Nonaqueous Solvents 879 D. Reversible vs Irreversible ET Reagents 879 E. Categorization of Reagent Strength 881 II. Oxidants 881 A. Inorganic 881 1. Metal and Metal Complex Oxidants 881 2. Main Group Oxidants 887 B. Organic 891 1. Radical Cations 891 2. Carbocations 893 3. Cyanocarbons and Related Electron-Rich Compounds 894

3,432 citations

Journal ArticleDOI
TL;DR: The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Abstract: The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

2,582 citations

Journal ArticleDOI
TL;DR: This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovSKite family for electronic, optical, and energy-based applications as well as fundamental research.
Abstract: Although known since the late 19th century, organic–inorganic perovskites have recently received extraordinary research community attention because of their unique physical properties, which make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices. This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovskite family for electronic, optical, and energy-based applications as well as fundamental research. The concept of a multifunctional organic–inorganic hybrid, in which the organic and inorganic structural components provide intentional, unique, and hopefully synergistic features to the compound, represents an important contemporary target.

1,962 citations

Journal ArticleDOI
TL;DR: In this article, a review of the basic ideas and techniques of spectral density functional theory which are currently used in electronic structure calculations of strongly correlated materials where the one-dimensional electron description breaks down is presented.
Abstract: We present a review of the basic ideas and techniques of the spectral density functional theory which are currently used in electronic structure calculations of strongly{correlated materials where the one{electron description breaks down. We illustrate the method with several examples where interactions play a dominant role: systems near metal{insulator transition, systems near volume collapse transition, and systems with local moments.

1,921 citations