scispace - formally typeset
Search or ask a question
Author

Patrick Bernier

Bio: Patrick Bernier is an academic researcher from University of Montpellier. The author has contributed to research in topics: Carbon nanotube & Raman spectroscopy. The author has an hindex of 45, co-authored 184 publications receiving 10507 citations. Previous affiliations of Patrick Bernier include University of Paris-Sud & University of Texas at Dallas.


Papers
More filters
Journal ArticleDOI
21 Aug 1997-Nature
TL;DR: In this article, it was shown that the growth mechanism for SWNTs must be independent of the details of the technique used to make them, and that the ready availability of large amounts of SWNT can make them much more accessible for further study.
Abstract: Single-walled carbon nanotubes (SWNTs) offer the prospect of both new fundamental science and useful (nano)technological applications1. High yields (70–90%) of SWNTs close-packed in bundles can be produced by laser ablation of carbon targets2. The electric-arc technique used to generate fullerenes and multi-walled nanotubes is cheaper and easier to implement, but previously has led to only low yields of SWNTs3,4. Here we show that this technique can generate large quantities of SWNTs with similar characteristics to those obtained by laser ablation. This suggests that the (still unknown) growth mechanism for SWNTs must be independent of the details of the technique used to make them. The ready availability of large amounts of SWNTs, meanwhile, should make them much more accessible for further study.

2,568 citations

Journal ArticleDOI
TL;DR: In this article, a comparative study of the energetic, structural, and elastic properties of carbon and composite single-wall nanotubes is presented, using a nonorthogonal tight-binding formalism.
Abstract: We present a comparative study of the energetic, structural, and elastic properties of carbon and composite single-wall nanotubes, including BN, ${\mathrm{BC}}_{3}$, and ${\mathrm{BC}}_{2}\mathrm{N}$ nanotubes, using a nonorthogonal tight-binding formalism. Our calculations predict that carbon nanotubes have a higher Young modulus than any of the studied composite nanotubes, and of the same order as that found for defect-free graphene sheets. We obtain good agreement with the available experimental results.

1,210 citations

Journal ArticleDOI
09 Dec 1994-Science
TL;DR: Composite sheets and nanotubes of different morphologies containing carbon, boron, and nitrogen were grown in the electric arc discharge between graphite cathodes and amorphousboron-filled graphite anodes in a nitrogen atmosphere to indicate that singlephaase CyBxNx as well as separated domains (nanosize) of borons nitride in carbon networks may exist.
Abstract: Composite sheets and nanotubes of different morphologies containing carbon, boron, and nitrogen were grown in the electric arc discharge between graphite cathodes and amorphous boron-filled graphite anodes in a nitrogen atmosphere. Concentration profiles derived from electron energy-loss line spectra show that boron and nitrogen are correlated in a one-to-one ratio; core energy-loss fine structures reveal small differences compared to pure hexagonal boron nitride. Boron and carbon are anticorrelated, suggesting the substitution of boron and nitrogen into the carbon network. Results indicate that singlephaase CyBxNx as well as separated domains (nanosize) of boron nitride in carbon networks may exist.

746 citations

Journal ArticleDOI
TL;DR: In this article, single-walled nitrogen doped nanotubes were prepared using two novel approaches in an arc discharge process, in which a nitrogen-rich precursor was introduced into the anode rods together with graphite and the catalysts.

233 citations

Journal ArticleDOI
TL;DR: In this article, a conjugated, semiconducting polymer was examined by a range of microscopic and spectroscopic techniques, to gain a greater understanding of the binding between polymer and nanotubes.
Abstract: Production of stable polymer−nanotube composites depends on good wetting interaction between polymer and nanotube, which is polymer specific, and depends in particular on chain conformation. In this paper, we examine this interaction for a conjugated, semiconducting polymer by a range of microscopic and spectroscopic techniques, to gain a greater understanding of the binding. Several interesting effects are observed, including an order to the interaction between the polymer and nanotube, the tendency of defects in the nanotube structure to nucleate crystal growth, and substantial changes in the spectroscopic behavior of the polymer due to the effect of the nanotubes on polymer conformation. This is substantiated by computational modeling, which demonstrates that these conformational modifications are due to the interaction with the nanotubes.

232 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
26 Jul 1996-Science
TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Abstract: The major part of this chapter has already appeared in [1], but because of the length restrictions (in Science), the discussion on why we think this form is given in only brief detail. This chapter goes into more depth to try to answer the questions of why the fullerenes form themselves. This is another example of the very special behavior of carbon. From a chemist’s standpoint, it is carbon’s ability to form multiple bonds that allows it to make these low dimensional forms rather than to produce tetrahedral forms. Carbon can readily accomplish this and it is in the mathematics and physics of the way this universe was put together, that carbon is given this property. One of the consequences of this property is that, if left to its own devices as carbon condenses from the vapor and if the temperature range is just right, above 1000°C, but lower than 1400°C, there is an efficient self-assembly process whose endpoint is C60.

5,215 citations

Journal ArticleDOI
TL;DR: A review of recent advances in carbon nanotubes and their composites can be found in this article, where the authors examine the research work reported in the literature on the structure and processing of carbon Nanotubes.

4,709 citations

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations

Journal ArticleDOI
01 Aug 2006-Carbon
TL;DR: In this article, a review of the progress to date in the field of mechanical reinforcement of polymers using nanotubes is presented, and the most promising processing methods for mechanical reinforcement are discussed.

3,770 citations