scispace - formally typeset
Search or ask a question
Author

Patrick Clarysse

Bio: Patrick Clarysse is an academic researcher from Claude Bernard University Lyon 1. The author has contributed to research in topics: Motion estimation & Image segmentation. The author has an hindex of 25, co-authored 162 publications receiving 2726 citations. Previous affiliations of Patrick Clarysse include Institut national des sciences Appliquées de Lyon & University of Lyon.


Papers
More filters
Journal ArticleDOI
TL;DR: The current status of cardiac image registration methods is reviewed and it is suggested that automatic registration, based on computer programs, might, however, offer better accuracy and repeatability and save time.
Abstract: In this paper, the current status of cardiac image registration methods is reviewed. The combination of information from multiple cardiac image modalities, such as magnetic resonance imaging, computed tomography, positron emission tomography, single-photon emission computed tomography, and ultrasound, is of increasing interest in the medical community for physiologic understanding and diagnostic purposes. Registration of cardiac images is a more complex problem than brain image registration because the heart is a nonrigid moving organ inside a moving body. Moreover, as compared to the registration of brain images, the heart exhibits much fewer accurate anatomical landmarks. In a clinical context, physicians often mentally integrate image information from different modalities. Automatic registration, based on computer programs, might, however, offer better accuracy and repeatability and save time.

429 citations

Journal ArticleDOI
TL;DR: This statistical atlas can help to improve the computational models used for radio-frequency ablation, cardiac resynchronization therapy, surgical ventricular restoration, or diagnosis and followups of heart diseases due to fiber architecture anomalies.
Abstract: Cardiac fibers, as well as their local arrangement in laminar sheets, have a complex spatial variation of their orientation that has an important role in mechanical and electrical cardiac functions. In this paper, a statistical atlas of this cardiac fiber architecture is built for the first time using human datasets. This atlas provides an average description of the human cardiac fiber architecture along with its variability within the population. In this study, the population is composed of ten healthy human hearts whose cardiac fiber architecture is imaged ex vivo with DT-MRI acquisitions. The atlas construction is based on a computational framework that minimizes user interactions and combines most recent advances in image analysis: graph cuts for segmentation, symmetric log-domain diffeomorphic demons for registration, and log-Euclidean metric for diffusion tensor processing and statistical analysis. Results show that the helix angle of the average fiber orientation is highly correlated to the transmural depth and ranges from -41° on the epicardium to +66° on the endocardium. Moreover, we find that the fiber orientation dispersion across the population (13°) is lower than for the laminar sheets (31°). This study, based on human hearts, extends previous studies on other mammals with concurring conclusions and provides a description of the cardiac fiber architecture more specific to human and better suited for clinical applications. Indeed, this statistical atlas can help to improve the computational models used for radio-frequency ablation, cardiac resynchronization therapy, surgical ventricular restoration, or diagnosis and followups of heart diseases due to fiber architecture anomalies.

198 citations

Journal ArticleDOI
TL;DR: Spatiotemporal registration can provide accurate motion estimation for 4D CT and improves the robustness to artifacts and is found most suitable to account for the sudden changes of motion at this breathing phase.
Abstract: Purpose: Four-dimensional computed tomography (4D CT) can provide patient-specific motion information for radiotherapy planning and delivery. Motion estimation in 4D CT is challenging due to the reduced image quality and the presence of artifacts. We aim to improve the robustness of deformable registration applied to respiratory-correlated imaging of the lungs, by using a global problem formulation and pursuing a restrictive parametrization for the spatiotemporal deformation model.

158 citations

Journal ArticleDOI
TL;DR: The new SinMod method extracts motion from magnetic resonance imaging (MRI)-tagged (MRIT) image sequences by performing better with respect to accuracy of displacement detection, noise reduction, and avoidance of artifacts.
Abstract: The new SinMod method extracts motion from magnetic resonance imaging (MRI)-tagged (MRIT) image sequences. Image intensity in the environment of each pixel is modeled as a moving sine wavefront. Displacement is estimated at subpixel accuracy. Performance is compared with the harmonic-phase analysis (HARP) method, which is currently the most common method used to detect motion in MRIT images. SinMod can handle line tags, as well as speckle patterns. In artificial images (tag distance six pixels), SinMod detects displacements accurately (error < pixels). Effects of noise are suppressed effectively. Sharp transitions in motion at the boundary of an object are smeared out over a width of 0.6 tag distance. For MRIT images of the heart, SinMod appears less sensitive to artifacts, especially later in the cardiac cycle when image quality deteriorates. For each pixel, the quality of the sine-wave model in describing local image intensity is quantified objectively. If local quality is low, artifacts are avoided by averaging motion over a larger environment. Summarizing, SinMod is just as fast as HARP, but it performs better with respect to accuracy of displacement detection, noise reduction, and avoidance of artifacts.

138 citations

Journal ArticleDOI
TL;DR: Simulation results obtained in four image modalities and with different models show that VIP is versatile and robust enough to support large simulations.
Abstract: This paper presents the Virtual Imaging Platform (VIP), a platform accessible at http://vip.creatis.insa-lyon.fr to facilitate the sharing of object models and medical image simulators, and to provide access to distributed computing and storage resources. A complete overview is presented, describing the ontologies designed to share models in a common repository, the workιow template used to integrate simulators, and the tools and strategies used to exploit computing and storage resources. Simulation results obtained in four image modalities and with different models show that VIP is versatile and robust enough to support large simulations. The platform currently has 200 registered users who consumed 33 years of CPU time in 2011.

111 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper attempts to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain, and provides an extensive account of registration techniques in a systematic manner.
Abstract: Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: 1) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; 2) longitudinal studies, where temporal structural or anatomical changes are investigated; and 3) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner.

1,434 citations

Patent
14 Nov 2011
TL;DR: In this paper, an image guided catheter navigation system for navigating a region of a patient includes an imaging device, a tracking device, and a controller, as well as a display that displays the image of the region with the catheter superimposed onto the image at the current location.
Abstract: An image guided catheter navigation system for navigating a region of a patient includes an imaging device, a tracking device, a controller, and a display. The imaging device generates images of the region of the patient. The tracking device tracks the location of the catheter in the region of the patient. The controller superimposes an icon representing the catheter onto the images generated from the imaging device based upon the location of the catheter. The display displays the image of the region with the catheter superimposed onto the image at the current location of the catheter.

1,278 citations

Journal ArticleDOI
TL;DR: Two new expressions for estimating registration accuracy of point-based guidance systems and a surprising conclusion that expected registration accuracy (TRE) is worst near the fiducials that are most closely aligned are presented.
Abstract: Guidance systems designed for neurosurgery, hip surgery, and spine surgery, and for approaches to other anatomy that is relatively rigid can use rigid-body transformations to accomplish image registration. These systems often rely on point-based registration to determine the transformation, and many such systems use attached fiducial markers to establish accurate fiducial points for the registration, the points being established by some fiducial localization process. Accuracy is important to these systems, as is knowledge of the level of that accuracy. An advantage of marker-based systems, particularly those in which the markers are bone-implanted, is that registration error depends only on the fiducial localization error (FLE) and is thus to a large extent independent of the particular object being registered. Thus, it should be possible to predict the clinical accuracy of marker-based systems on the basis of experimental measurements made with phantoms or previous patients. This paper presents two new expressions for estimating registration accuracy of such systems and points out a danger in using a traditional measure of registration accuracy. The new expressions represent fundamental theoretical results with regard to the relationship between localization error and registration error in rigid-body, point-based registration. Rigid-body, point-based registration is achieved by finding the rigid transformation that minimizes "fiducial registration error" (FRE), which is the root mean square distance between homologous fiducials after registration. Closed form solutions have been known since 1966. The expected value (FRE/sup 2/) depends on the number N of fiducials and expected squared value of FLE, (FLE/sup 2/), but in 1979 it was shown that (FRE/sup 2/) is approximately independent of the fiducial configuration C. The importance of this surprising result seems not yet to have been appreciated by the registration community: Poor registrations caused by poor fiducial configurations may appear to be good due to a small FRE value. A more critical and direct measure of registration error is the "target registration error" (TRE), which is the distance between homologous points other than the centroids of fiducials. Efforts to characterize its behavior have been made since 1989. Published numerical simulations have shown that (TRE/sup 2/) is roughly proportional to (FLE/sup 2/)/N and, unlike (FRE/sup 2/), does depend in some way on C. Thus, FRE, which is often used as feedback to the surgeon using a point-based guidance system, is in fact an unreliable indicator of registration-accuracy. In this work the authors derive approximate expressions for (TRE/sup 2/), and for the expected squared alignment error of an individual fiducial. They validate both approximations through numerical simulations. The former expression can be used to provide reliable feedback to the surgeon during surgery and to guide the placement of markers before surgery, or at least to warn the surgeon of potentially dangerous fiducial placements; the latter expression leads to a surprising conclusion: Expected registration accuracy (TRE) is worst near the fiducials that are most closely aligned! This revelation should be of particular concern to surgeons who may at present be relying on fiducial alignment as an indicator of the accuracy of their point-based guidance systems.

1,055 citations

Patent
30 Sep 2005
TL;DR: In this article, a non-invasive dynamic reference frame and/or fiducial marker, sensor tipped instruments, and isolator circuits are used for navigating a region of a patient.
Abstract: A surgical navigation system for navigating a region of a patient includes a non-invasive dynamic reference frame and/or fiducial marker, sensor tipped instruments, and isolator circuits. The dynamic reference frame may be repeatably placed on the patient in a precise location for guiding the instruments. The instruments may be precisely guided by positioning sensors near moveable portions of the instruments. Electrical sources may be electrically isolated from the patient.

863 citations