scispace - formally typeset
Search or ask a question
Author

Patrick Diamond

Bio: Patrick Diamond is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Turbulence & Wave turbulence. The author has an hindex of 71, co-authored 604 publications receiving 22522 citations. Previous affiliations of Patrick Diamond include General Atomics & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Abstract: A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave–zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying directions for progress in future research.

1,739 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of radially sheared poloidal flows on ambient edge turbulence in tokamaks is investigated analytically, and a hybrid time scale weighted toward the former and the latter is found to govern the decorrelation process.
Abstract: The impact of radially sheared poloidal flows on ambient edge turbulence in tokamaks is investigated analytically. In the regime where poloidal shearing exceeds turbulent radial scattering, a hybrid time scale weighted toward the former is found to govern the decorrelation process. The coupling between radial and poloidal decorrelation results in a suppression of the turbulence below its ambient value. The turbulence quench mechanism is found to be insensitive to the sign of either the radial electric field or its shear.

1,358 citations

Journal ArticleDOI
TL;DR: In this paper, the mechanism for the generation of mean poloidal flow by turbulence is identified and elucidated, and two methods of calculating poloidal acceleration are given and shown to yield predictions which agree.
Abstract: The mechanism for generation of mean poloidal flow by turbulence is identified and elucidated. Two methods of calculating poloidal flow acceleration are given and shown to yield predictions which agree. These methods link flow generation to the quasilinear radial current or the Reynolds stress 〈VrVθ〉. It is shown that poloidal acceleration will occur if the turbulence supports radially propagating waves and if radial gradients in the turbulent Reynolds stress and wave energy density flux are present. In practice, these conditions are met in the tokamak edge region when waves propagate through the outermost closed flux surface or when convection cells with large radial correlation length are situated in steep gradient regions. The possible impact of these results on the theory of the L→H transition is discussed.

422 citations

Journal ArticleDOI
TL;DR: A self-consistent model of the [ital L] to [ital H] transition is derived from coupled nonlinear envelope equations for the fluctuation level and radial electric field shear, which exhibit a supercritical bifurcation between dual dual L-mode and H-mode fixed points.
Abstract: A self-consistent model of the L to H transition is derived from coupled nonlinear envelope equations for the fluctuation level and radial electric field shear ${\mathrm{E}}_{\mathrm{r}}^{\ensuremath{'}}$. These equations exhibit a supercritical bifurcation between dual L-mode and H-mode fixed points. The transition occurs when the turbulence level is large enough for the Reynolds stress drive to overcome the damping of the E\ifmmode\times\else\texttimes\fi{}B flow. This defines a power threshold for the transition, which is calculated and found to be consistent with experimental findings.

350 citations

Journal ArticleDOI
TL;DR: In this article, the Hirshman and Sigmar moment approach was used to derive explicit expressions for the poloidal and toroidal rotation speeds of the primary ion and impurity species.
Abstract: Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H‐mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non‐negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation.

329 citations


Cited by
More filters
Journal Article
A. Gibson, Tadashi Sekiguchi, K. Lackner1, S. Bodner, R. Hancox 
TL;DR: In this paper, the first experiments in JET have been described, which show that this large tokamak behaves in a similar manner to smaller tokak, but with correspondingly improved plasma parameters.
Abstract: FIRST EXPERIMENTS IN JET. Results obtained from JET since June 1983 are described which show that this large tokamak behaves in a similar manner to smaller tokamaks, but with correspondingly improved plasma parameters. Long-duration hydrogen and deuterium plasmas (>10 s) have been obtained with electron temperatures reaching > 4 keV for power dissipations < 3 MW and with * Euratom-IPP Association, Institut fur Plasmaphysik, Garching, Federal Republic of Germany. ** Euratom-ENEA Association, Centro di Frascati, Italy. *** Euratom-UKAEA Association, Culham Laboratory, Abingdon, Oxfordshire, United Kingdom. **** University of Dusseldorf, Dusseldorf, Federal Republic of Germany. + Euratom-Ris0 Association, Ris National Laboratory, Roskilde, Denmark. ++ Euratom-CNR Association, Istituto di Física del Plasma, Milan, Italy. +++ Imperial College of Science and Technology, University of London, London, United Kingdom. ++++ Euratom-FOM Association, FOM Instituut voor Plasmafysica,. Nieuwegein, Netherlands. ® Euratom-Suisse Association, Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland.

3,647 citations

Journal ArticleDOI
TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.
Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

Journal ArticleDOI
TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Abstract: A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave–zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying directions for progress in future research.

1,739 citations

Journal ArticleDOI
TL;DR: The current understanding of astrophysical magnetic fields is reviewed in this paper, focusing on their generation and maintenance by turbulence, where analytical and numerical results are discussed both for small scale dynamos, which are completely isotropic, and for large scale dynamo, where some form of parity breaking is crucial.

1,548 citations