scispace - formally typeset
Search or ask a question
Author

Patrick Forget

Other affiliations: Université du Québec
Bio: Patrick Forget is an academic researcher from Institut national de la recherche scientifique. The author has contributed to research in topics: Femtosecond & Laser. The author has an hindex of 6, co-authored 13 publications receiving 1173 citations. Previous affiliations of Patrick Forget include Université du Québec.

Papers
More filters
Journal ArticleDOI
TL;DR: Femtosecond x-ray and visible pulses were used to probe structural and electronic dynamics during an optically driven, solid-solid phase transition in VO, suggesting that, in this regime, the structural transition may not be thermally initiated.
Abstract: Femtosecond x-ray and visible pulses were used to probe structural and electronic dynamics during an optically driven, solid-solid phase transition in VO(2). For high interband electronic excitation (approximately 5 x 10(21) cm(-3)), a subpicosecond transformation into the high-T, rutile phase of the material is observed, simultaneous with an insulator-to-metal transition. The fast time scale observed suggests that, in this regime, the structural transition may not be thermally initiated.

1,101 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results of the characterization of an ultrafast x-ray streak camera, based on the P860 tube, developed for use in ultrashort laser-produced plasma research.
Abstract: We present results of the characterization of an ultrafast x-ray streak camera, based on Photonis (formerly Philips Photonics) P860 tube, developed for use in ultrashort laser-produced plasma research. The streak camera presented here (called PX1) has been extensively characterized with continuous and pulsed x-ray sources. Time resolution of 350 fs in the keV x-ray range has been achieved, while maintaining a high spatial resolution of 40 μm along a direction perpendicular to the time dispersion axis. It is shown that the streak camera response is lower when the photocathode is illuminated by a pulsed source than when used with a continuous one. This effect seems to be related to a change in the phosphor response. The camera has been used to achieve high-resolution subpicosecond time-resolved spectroscopy of ultrashort laser plasmas allowing the measurements of K-shell line emission durations of 700 fs.

78 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied hard x-ray and hot electron generation from a Ti:sapphire laser with solid targets and showed that the contribution of another nonlinear mechanism, besides resonance absorption, to hard X-ray enhancement has been demonstrated via hot electron angular distribution and particle-in-cell simulations.
Abstract: Interaction of intense Ti:sapphire laser with solid targets has been studied experimentally by measuring hard x-ray and hot electron generation. Hard x-ray (8–100 keV) emission spectrum and Kα x-ray conversion efficiency (ηK) from plasma have been studied as a function of laser intensity (1017–1019 W/cm2), pulse duration (70–400)fs, and laser pulse fluence. For intensity I>1×1017 W/cm2, the Ag ηK increases to reach a maximum value of 2×10−5 at an intensity I=4×1018 W/cm2. Hot electron temperature (KTh) and ηK scaling laws have been studied as a function of the laser parameters. A stronger dependence of KTh and ηK as a function of the laser fluence than on pulse duration or laser intensity has been observed. The contribution of another nonlinear mechanism, besides resonance absorption, to hard x-ray enhancement has been demonstrated via hot electron angular distribution and particle-in-cell simulations.

58 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed an approach for the generation of broadband thermal X-ray spectrum using femtosecond laser-produced plasmas, which can be used for backlighting and absorption experiments.

20 citations

Journal ArticleDOI
TL;DR: In this article, the authors present measurement of characteristic Kα emission from Mo, Ag, and La targets irradiated by a 60 fs, 600 mJ, 10 Hz Ti:sapphire laser pulse at 1017-1019 W/cm2.
Abstract: We present measurement of characteristic Kα emission from Mo, Ag, and La targets irradiated by a 60 fs, 600 mJ, 10 Hz Ti:sapphire laser pulse at 1017–1019 W/cm2. These x-ray emissions can potentially be used in applications from laser-based hard x-ray sources to x-ray mammography so detailed knowledge of the spectra is required to assess imaging of the figure of merit. We show here that high resolving hard x-ray spectroscopy can be achieved, with resolving powers (E/ΔE) of 60 at 18 keV, with cadmium–zinc–telluride detection system. The Kα conversion efficiency from the laser light to the Kα photon was optimized thanks to this diagnostic and values as high as 2×10−5 were obtained.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Transparent conductors (TCs) have a multitude of applications for solar energy utilization and for energy savings, especially in buildings as discussed by the authors, which leads naturally to considerations of spectral selectivity, angular selectivity, and temporal variability of TCs, as covered in three subsequent sections.

1,471 citations

Journal ArticleDOI
19 Jul 2012-Nature
TL;DR: The observation of an insulator–metal transition in vanadium dioxide induced by a terahertz electric field is reported, demonstrating that integration of metamaterials with complex matter is a viable pathway to realize functional nonlinear electromagnetic composites.
Abstract: An innovative technique uses ultrafast below-bandgap electric-field pulses to induce and probe an insulator–metal transition in an oxide thin film on which a metamaterial structure has been deposited. The transition from insulating to metallic behaviour and the microscopic interactions that accompany the transition are important phenomena in electronic materials. Until now it has not been possible to observe the transition directly in a time-resolved manner. Here, Richard Averitt and colleagues use ultrafast terahertz pulses to induce a phase transition in a prototypical insulator–metal transition material (vanadium dioxide) on which a metamaterial structure has been deposited. The metamaterial serves to amplify the local terahertz field, as well as to detect macroscopic changes in vanadium dioxide. Through direct, time-resolved observations, the authors establish a detailed microscopic picture of the structural and electronic changes underlying the insulator–metal transition. They conclude that their technique is versatile and could even be used to study phase transitions in superconductors. Electron–electron interactions can render an otherwise conducting material insulating1, with the insulator–metal phase transition in correlated-electron materials being the canonical macroscopic manifestation of the competition between charge-carrier itinerancy and localization. The transition can arise from underlying microscopic interactions among the charge, lattice, orbital and spin degrees of freedom, the complexity of which leads to multiple phase-transition pathways. For example, in many transition metal oxides, the insulator–metal transition has been achieved with external stimuli, including temperature, light, electric field, mechanical strain or magnetic field2,3,4,5,6,7. Vanadium dioxide is particularly intriguing because both the lattice and on-site Coulomb repulsion contribute to the insulator-to-metal transition at 340 K (ref. 8). Thus, although the precise microscopic origin of the phase transition remains elusive, vanadium dioxide serves as a testbed for correlated-electron phase-transition dynamics. Here we report the observation of an insulator–metal transition in vanadium dioxide induced by a terahertz electric field. This is achieved using metamaterial-enhanced picosecond, high-field terahertz pulses to reduce the Coulomb-induced potential barrier for carrier transport9. A nonlinear metamaterial response is observed through the phase transition, demonstrating that high-field terahertz pulses provide alternative pathways to induce collective electronic and structural rearrangements. The metamaterial resonators play a dual role, providing sub-wavelength field enhancement that locally drives the nonlinear response, and global sensitivity to the local changes, thereby enabling macroscopic observation of the dynamics10,11. This methodology provides a powerful platform to investigate low-energy dynamics in condensed matter and, further, demonstrates that integration of metamaterials with complex matter is a viable pathway to realize functional nonlinear electromagnetic composites.

1,023 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the role of materials synthesis in influencing functional properties and discuss future research directions that may be worth consideration, concluding with a brief discussion on future directions that are worth consideration.
Abstract: Although phase transitions have long been a centerpiece of condensed matter materials science studies, a number of recent efforts focus on potentially exploiting the resulting functional property changes in novel electronics and photonics as well as understanding emergent phenomena. This is quite timely, given a grand challenge in twenty-first-century physical sciences is related to enabling continued advances in information processing and storage beyond conventional CMOS scaling. In this brief review, we discuss synthesis of strongly correlated oxides, mechanisms of metal-insulator transitions, and exploratory electron devices that are being studied. Particular emphasis is placed on vanadium dioxide, which undergoes a sharp metal-insulator transition near room temperature at ultrafast timescales. The article begins with an introduction to metal-insulator transition in oxides, followed by a brief discussion on the mechanisms leading to the phase transition. The role of materials synthesis in influencing functional properties is discussed briefly. Recent efforts on realizing novel devices such as field effect switches, optical detectors, nonlinear circuit components, and solid-state sensors are reviewed. The article concludes with a brief discussion on future research directions that may be worth consideration.

859 citations

Journal ArticleDOI
TL;DR: In this article, the authors review studies of the electromagnetic response of various classes of correlated electron materials including transition metal oxides, organic and molecular conductors, intermetallic compounds with $d$- and $f$-electrons as well as magnetic semiconductors.
Abstract: We review studies of the electromagnetic response of various classes of correlated electron materials including transition metal oxides, organic and molecular conductors, intermetallic compounds with $d$- and $f$-electrons as well as magnetic semiconductors. Optical inquiry into correlations in all these diverse systems is enabled by experimental access to the fundamental characteristics of an ensemble of electrons including their self-energy and kinetic energy. Steady-state spectroscopy carried out over a broad range of frequencies from microwaves to UV light and fast optics time-resolved techniques provide complimentary prospectives on correlations. Because the theoretical understanding of strong correlations is still evolving, the review is focused on the analysis of the universal trends that are emerging out of a large body of experimental data augmented where possible with insights from numerical studies.

668 citations

Journal ArticleDOI
26 Jul 2012-Nature
TL;DR: This work prepared metal–insulator–semiconductor field-effect transistors based on vanadium dioxide and found that electrostatic charging at a surface drives all the previously localized charge carriers in the bulk material into motion, leading to the emergence of a three-dimensional metallic ground state.
Abstract: In the classic transistor, the number of electric charge carriers--and thus the electrical conductivity--is precisely controlled by external voltage, providing electrical switching capability. This simple but powerful feature is essential for information processing technology, and also provides a platform for fundamental physics research. As the number of charges essentially determines the electronic phase of a condensed-matter system, transistor operation enables reversible and isothermal changes in the system's state, as successfully demonstrated in electric-field-induced ferromagnetism and superconductivity. However, this effect of the electric field is limited to a channel thickness of nanometres or less, owing to the presence of Thomas-Fermi screening. Here we show that this conventional picture does not apply to a class of materials characterized by inherent collective interactions between electrons and the crystal lattice. We prepared metal-insulator-semiconductor field-effect transistors based on vanadium dioxide--a strongly correlated material with a thermally driven, first-order metal-insulator transition well above room temperature--and found that electrostatic charging at a surface drives all the previously localized charge carriers in the bulk material into motion, leading to the emergence of a three-dimensional metallic ground state. This non-local switching of the electronic state is achieved by applying a voltage of only about one volt. In a voltage-sweep measurement, the first-order nature of the metal-insulator transition provides a non-volatile memory effect, which is operable at room temperature. Our results demonstrate a conceptually new field-effect device, extending the concept of electric-field control to macroscopic phase control.

668 citations